GEOMETRIC THETA-LIFTING FOR UNITARY GROUPS

SERGEY LYSENKO

Abstract. In this note we define the geometric theta-lifting functors in the global nonramified setting. They are expected to provide new cases of the geometric Langlands functoriality.

1. INTRODUCTION

1.1. In this note we define the geometric theta-lifting functors in the global nonramified setting. They are expected to provide new cases of the geometric Langlands functoriality. At level of functions the theta-lifting for unitary groups was studied by many authors ([1, 3, 4, 13, 15]).

The definition uses a splitting of the metaplectic extension over the unitary groups. The splitting existing in the litterature at the level of functions ([6, 4, 14, 15]) are not entirely satisfactory. Namely, given a local field F and its degree two extension E, for the corresponding unitary group the splitting in loc.cit. is defined up to a multiplication by a character of E^*/F^* with values in C^1 (the group of complex numbers of absolute value one). We give a more canonical geometric construction of this splitting.

1.2. Notations. We follow the conventions of [10]. So, we work over an algebraically closed field k of characteristic $p \neq 2$. We fix a prime $\ell \neq p$, write \bar{Q}_{ℓ} for the algebraic closure of Q_{ℓ}. All our stacks are defined over k. For an algebraic stack locally of finite type S we have the derived categories $D(S), D^-(S), D^+(S)$ of complexes of \bar{Q}_{ℓ}-sheaves on S as in loc.cit.

Let X be a smooth projective connected curve. Write Ω for the canonical line bundle on X. Let $\pi : Y \to X$ be an étale degree 2 cover with Y connected. Write σ for the nontrivial automorphism of Y over X, $\pi_* \mathcal{O} = \mathcal{O} \oplus \mathcal{E}$, where \mathcal{E} is the sheaf of σ-antiinvariants, so $\mathcal{E}^2 \cong \mathcal{O}$. Once and for all we pick a line bundles $\mathcal{E}', \Omega^1_\mathbb{Z}$ on X with isomorphisms $\mathcal{E}'^2 \cong \mathcal{E}, (\Omega^1_\mathbb{Z})^2 \cong \Omega$.

For an algebraic group G write Bun_G for the stack of G-torsors on X. For $n \geq 1$ write Bun_n (resp., $\text{Bun}_{n,Y}$) for the stack of G-torsors on X (resp., on Y).

2. MODULI OF UNITARY BUNDLES AND GEOMETRIC THETA-LIFTING

2.1. Pick $\epsilon = \pm 1$. For $n \geq 1$ an ϵ-hermitian vector bundle on Y (with respect to π) is a datum of $V \in \text{Bun}_{n,Y}$ with a nondegenerate form $\phi : V \otimes \sigma^*V \to \mathcal{O}_Y$ such that the
2.1.1. For an ϵ-hermitian vector bundle V on Y viewing ϕ as an isomorphism $\phi : \sigma^* V \to V^*$, one gets $(\sigma^* \phi)^* = \epsilon \phi$. Consider the isomorphism

$$
(\sigma^* \phi, \phi) : V \oplus \sigma^* V \to \sigma^* V^* \oplus V^*
$$

on Y. Let $M = \pi_* C$. Let σ act on $V \oplus \sigma^* V$ such that the natural isomorphism $V \oplus \sigma^* V \cong \pi^* M$ is σ-invariant. Then (1) is σ-equivariant, so descends to an isomorphism $\bar{\phi} : M \to M^*$ such that $\bar{\phi}^* = \epsilon \bar{\phi}$. We also view the latter as a map $\bar{\phi} : M \otimes M \to \mathcal{O}_X$. So, ϕ is symmetric for $\epsilon = 1$ (resp., anti-symmetric for $\epsilon = -1$).

Consider the isomorphism

$$
(-\sigma^* \phi, \phi) : V \oplus \sigma^* V \to \sigma^* V^* \oplus V^*
$$

As above, there is a unique isomorphism $\phi' : M \to M^* \otimes \mathcal{E}$ such that $\pi^* (\phi') = (-\sigma^* \phi, \phi)$. Besides, ϕ' is symmetric for $\epsilon = -1$ (resp., antisymmetric for $\epsilon = 1$).

Let $\text{Bun}_\mathcal{O}_{2n}$ be the stack classifying $M \in \text{Bun}_{2n}$ with a nondegenerate symmetric form $\text{Sym}^2 M \to \mathcal{O}_X$. Let $q_n : \text{Bun}_U \to \text{Bun}_\mathcal{O}_{2n}$ be the map sending (V, ϕ) to $(M = \pi_* V, \bar{\phi})$. Let $q_n : \text{Bun}_U \to \text{Bun}_\mathcal{O}_{2n}$ be the map sending (V, ϕ) to $(M \otimes \mathcal{E}', \phi')$. Here we have viewed ϕ' as a map $\text{Sym}^2 (M \otimes \mathcal{E}') \to \mathcal{O}_X$.

The stack $\text{Bun}_\text{Sp}_{2n}$ classifies $M \in \text{Bun}_{2n}$ with a symplectic form $\wedge^2 M \to \mathcal{O}_X$. Let $p_n : \text{Bun}_U \to \text{Bun}_\text{Sp}_{2n}$ be the map sending (V, ϕ) to $(M \otimes \mathcal{E}', \phi')$. Here $M = \pi_* V$. Let also $p_n : \text{Bun}_U \to \text{Bun}_\text{Sp}_{2n}$ be the map sending (V, ϕ) to $(M, \bar{\phi})$.

2.1.2. We have a canonical identification $\pi^* \mathcal{E} \cong \mathcal{O}$ such that the descent data for $\pi^* \mathcal{E}$ are given by the action of σ on \mathcal{O} as -1. This gives an isomorphism $\delta : \text{Bun}_U \to \text{Bun}_{U^-}$ sending (V, ϕ) to $(V \otimes \pi^* \mathcal{E}', \phi)$. The diagram commutes

$$
\begin{array}{ccc}
\text{Bun}_U & \xrightarrow{\phi_n} & \text{Bun}_{\mathcal{O}_{2n}} \\
\downarrow q_n & & \downarrow p_n \\
\text{Bun}_{U^-} & \xrightarrow{\phi_n} & \text{Bun}_{\text{Sp}_{2n}}
\end{array}
$$

2.1.3. The stack Bun_{U_1} is a group stack described in ([8], Appendix A). We have the norm map $N : \text{Bun}_{1,Y} \to \text{Bun}_1$ sending \mathcal{L} to $\mathcal{L} \otimes \det(\pi_* \mathcal{L})$, this is a homomorphism of group stacks. The stack Bun_{U_1} classifies $V \in \text{Bun}_{1,Y}$ together with a trivialization $N(V) \to \mathcal{O}_X$. The stack Bun_{U_1} has connected components $\text{Bun}_{U_1}^a$ indexed by $a \in \mathbb{Z}/2\mathbb{Z}$, $\text{Bun}_{U_1}^0$ being the connected component of unity. The stack $\text{Bun}_{U_1}^1$ classifies $V \in \text{Bun}_{1,Y}$ with an isomorphism $N(V) \cong \mathcal{E}$.

The group stack Bun_{U_1} acts on Bun_{U_n} sending $(\mathcal{L}, \phi_{\mathcal{L}}) \in \text{Bun}_{U_1}, (V, \phi) \in \text{Bun}_{U_n}$ to $(V \otimes \mathcal{L}, \phi \otimes \phi_{\mathcal{L}}) \in \text{Bun}_{U_n}$. Let $\rho_n : \text{Bun}_{U_n} \to \text{Bun}_{U_1}$ be the map sending (V, ϕ) to $(\det V, \det \phi)$.

2.1.4. For $n > 1$ let $(V, \phi) \in \text{Bun}_{U_n}$. Then $\det \phi : \sigma^* \det V \overset{\sim}{\to} \det V^*$ can be seen as a trivialization $\xi : N(\det V) \overset{\sim}{\to} \mathcal{O}$. Let Bun_{SU_n} be the stack classifying $V \in \text{Bun}_{U_n}$ with an isomorphism $\det V \overset{\sim}{\to} \mathcal{O}_Y$ such that the induced isomorphism $N(\det V) \overset{\sim}{\to} N(\mathcal{O}_Y) \overset{\sim}{\to} \mathcal{O}_X$ is ξ. So, Bun_{SU_n} is the fibre of the map $\rho_n : \text{Bun}_{U_n} \to \text{Bun}_{U_1}$ over the unit $\mathcal{O}_Y \in \text{Bun}_{U_1}$ of this group stack.

By ([5], Theorem 2) the stack Bun_{SU_n} is connected. By ([5], Theorem 3), if $n > 1$ then $\text{Pic}(\text{Bun}_{SU_n}) \overset{\sim}{\to} \mathbb{Z}$. The line bundle on Bun_{SU_n} sending $V \in \text{Bun}_{U_n}$ to $\det \Gamma(Y, V)$ is twice a generator of $\text{Pic}(\text{Bun}_{SU_n})$ by ([12], Remark 3.6(2)).

2.2. Twist by Ω. As in [8] write Bun_{G_n} for the stack classifying $M \in \text{Bun}_{2n}$ with a symplectic form $\wedge^2 M \to \Omega_X$. Write $\text{Bun}_{O_{2n}, \Omega}$ for the stack classifying $M \in \text{Bun}_{2n}$ with a nondegenerate symmetric bilinear form $\text{Sym}^2 M \to \Omega$.

Write $\text{Bun}_{U_n, s}$ for the stack classifying $V \in \text{Bun}_{n, Y}$ together with an isomorphism

$$\phi : \sigma^* V \overset{\sim}{\to} V^* \otimes \pi^* \Omega$$

such that ϕ is skew-hermitian. In other words, $(\sigma^* \phi)^* = -\phi$. Here s stands for 'skew-hermitian'. Write Ω_Y for the canonical line bundle on Y, one has $\pi^* \Omega \overset{\sim}{\to} \Omega_Y$.

As in Section 2.1.1, for $(V, \phi) \in \text{Bun}_{U_n, s}$ let $M = \pi_* V$. There is a unique symplectic form $\phi : M \overset{\sim}{\to} M^* \otimes \Omega$ such that

$$\pi^* \phi = (\sigma^* \phi, \phi) : V \otimes \sigma^* V \to (\sigma^* V^* \oplus V^*) \otimes \pi^* \Omega$$

There is also a unique symmetric bilinear form $\phi' : M \to M^* \otimes \Omega \otimes \mathcal{E}$ such that

$$\pi^* \phi' = (-\sigma^* \phi, \phi) : V \otimes \sigma^* V \to (\sigma^* V^* \oplus V^*) \otimes \pi^* (\Omega \otimes \mathcal{E})$$

This defines a diagram

$$\text{Bun}_{O_{2n}, \Omega} \overset{q_{n,s}}{\leftarrow} \text{Bun}_{U_n, s} \overset{p_{n,s}}{\to} \text{Bun}_{G_n},$$

where $p_{n,s}$ sends (V, ϕ) to $(M = \pi_* V, \phi)$, and $q_{n,s}$ sends (V, ϕ) to $(M \otimes \mathcal{E}', \phi')$.

2.3. Square root. Denote by A_n the line bundle on Bun_{G_n} whose fibre at M is $\det \Gamma(X, M)$. Write $\widetilde{\text{Bun}}_{G_n}$ for the gerbe of square roots of A_n over Bun_{G_n}.

Our immediate purpose is to construct a distinguished square root of the line bundle $p_{n,s}^* A_n$. Our construction will depend only on the choices of Ω^2_1, \mathcal{E}' that we made in Section 1.2, and also on a choice of $i \in k$ with $i^2 = -1$.

2.3.1. For $W \in \text{Bun}_n$ write for brevity $d(W) = \det \Gamma(X, W)$, we view it as a $\mathbb{Z}/2\mathbb{Z}$-graded line.

For $A_i \in \text{Bun}_1$ set

$$K(A_1, A_2) = \frac{d(A_1 \otimes A_2) \otimes d(\mathcal{O})}{d(A_1) \otimes d(A_2)}$$

We view this line as a $\mathbb{Z}/2\mathbb{Z}$-graded. Then K is bilinear up to a canonical isomorphism by ([9], Section 4.2.1-4.2.2).
One has a canonical Pfaffian line bundle Pf on $\text{Bun}_{\mathbb{D}^{2n},\Omega}$ defined in ([2], Section 4.2.1). Pick $i \in k$ with $i^2 = -1$. This choice yields a canonical $\mathbb{Z}/2\mathbb{Z}$-graded isomorphism $Pf(W)^2 \overset{\sim}{\to} d(W)$ for $W \in \text{Bun}_{\mathbb{D}^{2n},\Omega}$ as in loc.cit. An alternative construction of Pf is given in [7].

Given $(V, \phi) \in \text{Bun}_{U_n,s}$ let $M = \phi_* V$. The symplectic form $\tilde{\phi} : \wedge^2 M \to \Omega$ induces an isomorphism $\det M \overset{\sim}{\to} \Omega^n$. By ([8], Lemma 1) one has canonically for $(V, \phi) \in \text{Bun}_{U_n,s}$ and $M = \pi_* V$

\begin{equation}
(3) \quad d(M \otimes \mathcal{E}') \overset{\sim}{\to} d(M) \otimes K(\Omega^n, \mathcal{E}') \otimes \frac{d(\mathcal{E}')^{2n}}{d(\Omega)^{2n}}
\end{equation}

Our choice of Ω^1, bilinearity of K, and (3) yield an isomorphism

\begin{equation}
(4) \quad Pf(M \otimes \mathcal{E}')^2 \overset{\sim}{\to} d(M) \otimes \left(K(\Omega^1, \mathcal{E}') \otimes \frac{dX(e)}{X(\Omega^1, \mathcal{E}') \otimes dX(\mathcal{E}')} \right)^n
\end{equation}

Denote by L_n the line bundle on $\text{Bun}_{U_n,s}$ whose fibre at (V, ϕ) is

\[Pf(M \otimes \mathcal{E}) \otimes \left(\frac{dX(\Omega)}{K_X(\Omega^1, \mathcal{E}) \otimes dX(\mathcal{E})} \right)^n \]

Then (4) yields the desired isomorphism over $\text{Bun}_{U_n,s}$

\[L_n^2 \overset{\sim}{\to} \mathfrak{p}_{n,s}^* \mathfrak{A}_n \]

Let $\tilde{\mathfrak{p}}_{n,s} : \text{Bun}_{U_n,s} \to \tilde{\text{Bun}}_{G_n}$ be the map sending (V, ψ) to $\mathfrak{p}_{n,s}(V, \phi) = (M, \tilde{\phi})$ and a line $L_n(V, \phi)$ equipped with the above isomorphism $L_n(V, \phi)^2 \overset{\sim}{\to} d(M)$.

2.4. Dual pair U_n, U_m. Let $n, m \geq 1$. Write

\[\tau : \text{Bun}_{U_n} \times \text{Bun}_{U_m,s} \to \text{Bun}_{U_{nm},s} \]

for the map sending $(V_1, \phi_1) \in \text{Bun}_{U_n}$, $(V_2, \phi_2) \in \text{Bun}_{U_m,s}$ to $V_1 \otimes V_2$ with the induced isomorphism

\[\phi_1 \otimes \phi_2 : \sigma^*(V_1 \otimes V_2) \overset{\sim}{\to} (V_1 \otimes V_2)^* \otimes \pi^* \Omega \]

The groups U_n, U_m form a dual pair in G_{nm} essentially via the map $\mathfrak{p}_{nm,s} \tau$. Let Aut be the theta-sheaf on Bun_{G_n} given in ([11], Definition 1). Define the theta-lifting functors

\[F_s : \text{D}^-(\text{Bun}_{U_n})! \to \text{D}^-(\text{Bun}_{U_m,s}), \quad F : \text{D}^-(\text{Bun}_{U_{nm},s})! \to \text{D}^-\left(\text{Bun}_{U_n}\right) \]

following the framework of the geometric Langlands functoriality proposed in ([10], Section 2) for the kernel

\[M = \tau^* \tilde{\mathfrak{p}}_{nm,s}^* \text{Aut}[\dim \text{Bun}_{U_n} \times \text{Bun}_{U_m,s} - \dim \text{Bun}_{G_{nm}}] \]

That is, for $K \in \text{D}^-(\text{Bun}_{U_n})!$ and $K' \in \text{D}^-(\text{Bun}_{U_{nm},s})!$ we let

\[F_s(K) = (q_s)_!(q^* K \otimes M)[\dim \text{Bun}_{U_n}] \quad \text{and} \quad F(K') = q'_!(q^* K' \otimes M)[\dim \text{Bun}_{U_{nm},s}] \]

for the diagram of projections

\[\text{Bun}_{U_n} \overset{q_s}{\leftarrow} \text{Bun}_{U_n} \times \text{Bun}_{U_m,s} \overset{q_s}{\rightarrow} \text{Bun}_{U_{nm},s} \]
References

Institut Elie Cartan Lorraine, Université de Lorraine, B.P. 239, F-54506 Vandoeuvre-lès-Nancy Cedex, France

Email address: Sergey.Lysenko@univ-lorraine.fr