CORRECTION TO ‘GEOMETRIZING THE MINIMAL
REPRESENTATIONS OF EVEN ORTHOGONAL GROUPS’

VINCENT LAFFORGUE AND SERGEY LYSENKO

ABSTRACT. Let X be a smooth projective curve. Write Bungg,, for the moduli stack
of SO,,,-torsors on X. We give a geometric interpretation of the automorphic function
f on Bungg,, corresponding to the minimal representation. Namely, we construct a
perverse sheaf Xz on Bungg,, such that f should be equal to the trace of Frobenius of
XK plus some constant function. The construction is based on some explicit geometric
formulas for the Fourier coefficients of f on one hand, and on the geometric theta-lifting
on the other hand. Our construction makes sense for more general simple algebraic
groups, we formulate the corresponding conjectures. They could provide a geometric
interpretation of some unipotent automorphic representations in the framework of the
geometric Langlands program.

1. INTRODUCTION

This is a correction to the published version of this paper: V. Lafforgue, S. Lysenko,
Geometrizing the minimal representations of even orthogonal groups, Represent. Theory
17 (2013), 263-325. We are very grateful to Lizao Ye, who has pointed out two mistakes
corrected in this version.

1.1. The theory of minimal representations has been developped (at least since 1989) in
the works of D. Kazhdan, G. Savin, W.T. Gan, D. Ginzburg, S. Rallis, D.Soudry and
others (cf. [11] for a recent survey) in several settings, over finite, local and global fields.
In the theory of automorphic forms they are of special interest as they allow to prove
some particular cases of Langlands functoriality via ‘generalized theta correspondences’.

The first example of a minimal representation is the Weil representation of the meta-
plectic group. In [19] a geometric version of the corresponding automorphic theta-function
was constructed. In the present paper we develop a similar geometric theory for the mini-
mal representations of even orthogonal groups. One of our motivations is a hope that the
automorphic sheaves corresponding to the minimal representations will yield new cases of
the geometric Langlands functoriality, as in the classical theory. For example, this should
be the case for the dual pair (SQ3,SOsy,,_5) in SOy, .

The place of minimal representations becomes clearer from the perspective of Arthur
conjectures [1], they are particular examples of unipotent automorphic representations.

Let k£ be a finite field. Let X be a smooth projective geometrically connected curve
over k. Let H be a simple split group. Let T C B C H be a maximal torus and a Borel
subgroup. Write A for the coweight lattice of 7. Write H for the Langlands dual group
of H over Q. Set F = k(X). Let A be the adeles ring of F, O C A be the entire adeles.
For x € X write F), for the completion of F' at z.
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The unipotent representations we are interested in have been studied, in particular,
in [22]. Moeglin considers irreducible representations 7= of H(A) appearing as a direct
summand in L?(H(F)\H(A)), which are everywhere nonramified and satisfy the following
assumption. There is a character x : T(A)/T(0) — Q} that decomposes as

T(A)/T(0)= Div(X) @ A “25™ A — Q;

such that 7 appears in the induced representation indg((ﬁ))x. They are expected to cor-

respond to homomoprhisms ¢ : SLy — H such that the corresponding unipotent H-orbit
does not intersect any proper Levi subgroup.

Namely, let ¢ : SLy — H satisfy this property. Let Ty = e x Tz, Where 7, is the
spherical representation of H(F,) with Langlands parameter

[t |20
¢( 0 |t]d )

where t, € F, is a uniformizer. If H is one of the split groups SQs,,, SO0y, 1,Sp,,, then,
as Moeglin proved, 7, appears in L?(H(F)\H(A)) as a direct summand with multiplicity
one. We also expect this to hold in type F,,.

Let Bungy denote the stack of H-torsors on X. The problem we are interested in is to
find an object K, € D(Bung) of the derived category of Q-sheaves on Bung, which is
a geometric analog of mg. Let o : G, — H denote the restriction of ¢ under the map
Gy — SLg, z +— diag(z,2~'). Then K, should be a o-Hecke eigensheaf as defined in
([20], Definition 1).

If H is of type D,, or E,, then the subregular unipotent orbit in H does not intersect any
proper Levi subgroup, and the corresponding representation w4 of H(A) is the minimal
one. Its Arthur parameter is the homomorphism id x¢ : m1(X) x SLy — H, where ¢
corresponds to the subregular unipotent orbit.

In Appendix A we introduce a notion of an almost constant local system on Bung.
We think they are nothing but the automorphic sheaves on Bungy corresponding to the
Arthur parameters of the form a x ¢, : m(X) x SLy — H, where ¢p + SLy — H is
principal, and o factors through the center Z(H) of H. Conjecturally, any local system
on Bung is almost constant (after passing from k& to its algebraic closure). Denote by
D(Bung);s € D(Bung) the full triangulated subcategory generated by the almost con-
stant local systems. It is preserved by Hecke functors, so they also act on the quotient
category D(Bung )/ D(Bung);s.

Assume H = SQ,,, split with n > 4. Let ¢ : SLy — H correspond to the subregular
unipotent orbit. OQur main results are Theorems 2.3.3 and 2.3.5, they provide a perverse
sheaf Ky € D(Buny) irreducible on each connected component of Bungy and such that
its image in D(Bung )/ D(Bungy);s satisfies the Hecke property for the Arthur parameter
id x¢ : 71 (X) x SLy — H. So, the object K, which we are not able to find yet, will have
the same image as Xy in D(Bung)/D(Bung);s.

In the classical setting one could take the orthogonal complement to the vector space
generated by the ‘almost constant functions’ on Bung, and find a function in this or-
thogonal complement which coincides with the trace of Frobenius of Ky modulo the
‘almost constant functions’ on Bung. In the geometric setting the problem of lifting of
KXy € D(Bung)/D(Bung)is to Ky € D(Bung) looks more difficult.

1.2. One can construct the minimal representation 7 of H(A) as the restricted tensor
product of minimal representations 7, of H(F,), x € X. Each m, is the local theta-lift of
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the trivial representation of SLa(F) for the dual pair (SLe, H) in the metaplectic group
Sim- The corresponding global theta-lift is divergent, and one has to take a residue of
the corresponding series to obtain . Another way is to realize 7 as a residue of Eisenstein
series for some parabolic subgroups of H (see [13]). Neither of these constructions admits
an evident geometrization. It is not clear what a residue of a geometric Eisenstein series (or
a divergent theta-series) should be in general, this was one of the key technical difficulties
in this paper. Our construction suggests, a posteriori, a possible geometric approach to
residues of Eisenstein series at least in the simplest cases (see Section ss: 1.3).

Our construction of Ky is based on the theta-lifting. Let 2 be the canonical line
bundle on X. Let G; be the group scheme on X of automorphisms of Ox & 2 acting
trivially on det(Ox @ ). Let P C H be a parabolic subgroup preserving some isotropic
n-dimensional subspace in the standard representation of H.

In ([20], Definition 2) the theta-lifting functor Fz : D~ (Bung, )1 — D~ (Bung) has been
introduced, it is given by the kernel Autg, x on Bung, x Bung, which is the restriction
of the theta-sheaf for Spy,,. Let ¢ : Bung, x Bunyg — Bung be the projection. In loc.cit.
we considered the morphism  : Gy x SLy — H given by

S04 x SLy 2" S04 x SOy, _5 — SO,

where the latter map is given by an orthogonal direct sum, and ¢, : SLy — SQO,,,_3 is
principal. By ([20], Theorem 3), Fy commutes with the Hecke functors with respect to
k. So, if we had Q; € D™ (Bung, ) then Fgr(Q,) would be the automorphic sheaf K, we
are looking for. However, Q; is not in D~ (Bung, )1, and the complex Fg(Qy), which is
¢ Autg, g up to a shift, does not make sense in the existing formalism. It is not bounded
from above neither from below.

One can however, formally look at its Fourier coefficients with respect to P. The stack
Bunp of P-torsors on X is the stack classifying U € Bun,, and an exact sequence 0 —
AN2U —? = Ox — 0. Let Yp be the stack classifying U € Bun,, and a section v : A2U — Q.
Then Yp and Bunp are dual generalized vector bundles over Bun,,, the stack of rank n
vector bundles on X. From the explicit formulas for Autg,, g in the Shrédinger model we
noticed that all the infiniteness of the Fourier transform Four(q Aute, ) is concentrated
on the zero section of Yp. This, together with the results about minimal representations
([13]) has led to our construction of Ky via the P-model (cf. Theorem 2.3.3).

Let @ (resp., R) be the parabolic subgroup of H preserving a l-dimensional (resp.,
2-dimensional) isotropic subspace in the standard representation. We also propose con-
jectural constructions of the same perverse sheaf KXy via @ and R-models. While the
@-model is a part of more general Conjecture 9.1.1 for simple groups admitting a para-
bolic subgroup with an abelian unipotent radical, the R-model plays a separate role. This
is a parabolic subgroup of H referred to as Heisenberg parabolic in [11], such parabolic
exists for any simple algebraic group. We hope that our explicit construction via R-model
will generalize to cover the cases when there is no parabolic subgroup with an abelian
unipotent radical (like Eg, for example).

In all three cases we construct some complexes Kp y, Kq 4, Kry on Bunp, Bung and
Bungp, respectively given by some explicit formulas. We expect that each of this complexes
is the restriction of Ky from Buny (over suitable open substacks). Here ¢ : F, — Q}
is a nontrivial additive character. For the parabolic P this is true and is a part of our
construction of Xg (cf. Theorem 2.3.3).

Our R-model uses as an input a new ingredient, the extended theta sheaf. This is
a perverse sheaf interesting on its own ground, as it is a geometric analog of the matrix
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coeflicient of the Weil representation of the semi-direct product gf)% x H,,, where H,, is the
Heisenberg group. Our definition of the perverse sheaf Kg ., on Bung (cf. Section 2.3.10)
is motivated by our compatibility result between P and R-models (cf. Corollary 6.1.5).

In Section 8 we propose one more conjectural construction of Xy via residues of geo-
metric Eisenstein series (this approach is formalized in Section 1.3). We then apply this to
calculate X explicitly in the cases of genus zero and one (Propositions 2.4.2 and 2.4.4).
This calculation shows, in particular, that the generic rank of Xy (for a given connected
component of Bung) does depend on the genus of X. In this sense the sheaf Ky is not
of local nature (as opposed to the case of the theta-sheaf for the metaplectic group).

In the main body of the paper we work with étale Q-sheaves in positive characteristic,
however our Theorem 2.3.3 holds also for D-modules in characteristic zero (in Appendix C
we briefly explain how to change the proof of Theorem 2.3.3 in this case).

1.3. Geometric approach to residues. Let G be a simple, simply-connected group,
P C G a maximal parabolic subgroup with Levi quotient M. The connected components
of Bunp are indexed by 71 (M) naturally, write Buns for the connected component given
by m € 71 (M). Note that 71 (M) = Z. Set 8™ = (v%),Qy, where % : Bun} — Bung is
the natural map.

Consider the induced representation indggg(x‘g), s € C, where

X P(A) — (M/[M, M])(A) = A" — Q,

the last map sends a € A* to | a|. The simplest residual representations appear inside
these induced representations as non ramified subquotients at points s € C of reducibility.
These points, for an appropriate normalization, correspond also to the (simple) poles of
the Eisenstein series E§(s).

We suggest that for such s there is an affine function « : Z — Z, a(m) = am + b such
that for m small enough, the perverse sheaf PH*("™)(8™) stabilizes (or at least, contains
the same irreducible perverse sheaf X as a subquotient). Then say that the sequence 8"
has a residue in the direction «.

1.4. Acknowledgements. We would like to thank A. Genestier, V. Drinfeld, C. Moeglin
and W. T. Gan for helpful discussions.

2. MAIN RESULTS

2.1. Notation. Let k be an algebraically closed field of characteristic p > 2 (except in
Section 3.2 and 7.1-7.3, where we assume k = F finite with ¢ odd). All the schemes or
stacks we consider are defined over k.

Let X be a smooth projective geometrically connected curve of genus g. Write €2 for the
canonical line bundle on X. Fix a prime ¢ # p. For a stack S locally of finite type write
D(S) for the category introduced in ([16], Remark 3.21) and denoted D.(S, Q) in loc.cit.
It should be thought of as the unbounded derived category of constructible Q,-sheaves on
S. For * = —, b one has the full subcategory D*(S) C D(S) denoted D} (S, Q) in loc.cit.
Write D™(S) C D(S) for the full subcategory of complexes K € D(S) such that for any
open substack of finite type U C S we have K |y€ D™ (U). Write P(S) C D(S) for the
full subcategory of perverse sheaves.

Fix a nontrivial character ¢ : F,, — Q}‘ and denote by L, the corresponding Artin-
Shreier sheaf on A'. Fix a square root Q¢(%) of the sheaf Q,(1) on Speck. If k = F, the
isomorphism class of such correspond to square roots of g in Q. For a morphism of stacks



GEOMETRIZING MINIMAL REPRESENTATIONS 5

f:Y — Z write dim. rel(f) for the function of a connected component C' of Y given by
dim C' — dim C’, where C” is the connected component of Z containing f(C').

If V- S and V* — § are dual rank r vector bundles over a stack S, write Four :
D=(V) — D™(V*) for the Fourier transform given by Foury,(K) = (py+)1(§*Ly@p} K)[r] (%),
where py, py- are the projections and & : V xg V* — Al is the pairing.

Write Bun, for the stack of rank r vector bundles on X. Our conventions about Z/27Z-
gradings are those of ([19], 3.1). For a group scheme G over X denote by Bung the stack
of G-torsors on X.

For a connected reductive group G over Q, write Rep(§) for the category of finite-
dimensional Q-representations of §. Write DP(k) = @®4ezP(Speck)[d] C D(Speck) for
the full subcategory in D(Spec k). By definition, we have an equivalence of tensor cate-
gories Loc : Rep(G,,,) = DP(k) sending St®" to Q[m]. Here St is the standard represen-
tation of G,,.

If k = F, then we denote F' = k(X), A the adeles of X and O C A the entire adeles.

2.2. Extended theta sheaf. For n > 0 let My = O™ & Q", write G,, for the group
scheme on X of automorphisms of My preserving the natural symplectic form A2My — Q.
The stack Bung, classifies M € Buny, with symplectic form A2M — Q. Let H, =
My @ Q) be the corresponding Heisenberg group scheme on X, write G,, = G,, x H, for
the corresponding semi-direct product (cf. Section 3.1 for details).

Write Ag, for the line bundle on Bung, with fibre det RI'(X, M) at M. We view
it as a Z/2Z-graded purely of degree zero. Denote by ]il/ngn — Bung,, the po-gerb of
square roots of Ag,, . Write Aut for the perverse theta-sheaf on BAu/nGn introduced in ([19],
Definition 1).

The stack Bung, classifies M; € Bung, o with symplectic form A2M; — € and a
section v :  — M; whose image is a subbundle. For a point of Bung, write L_; for the
orthogonal complement to 2, so M = L_,/Q € Bung, . Write pg : Bung, — Bung,, for
the map sending (M, v) to M. Set Bung, = Bung, X Bung, Bung,, .

Let o Bung, C Bung, be the open substack given by H%(X, M) = 0, define ( Bung
0 BHI/lGn, 0 BAu/nGn similarly. Write Bung for the stack classifying exact sequences

(2.1) 0-Q-=7=-0—-0

n?

on X. Let evg : Bung — A! be the map sending (2.1) to the corresponding element of
H'(X,Q). We have canonically

(2.2) oBung, = %Gn x Bung

Definition 2.2.1. Write Autz for the intermediate extension of

(Aut BeviyLy) @ (Q[1)(5)

under the open immersion g Bung, — B;;l(;n. Here e stands for ‘extended’, we call Autz
the extended theta-sheaf.

Let P, C G, be the parabolic group subscheme preserving O™ C M. Set P, = P, xH,,.
The stack Bunp, classifies £ € Bun,, included into an exact sequence on X

(2.3) 0-Q—=L—>L—-0
and an exact sequence on X

(2.4) 0— Sym?>L =? - Q=0
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Let T, be the stack classifying £ € Bun,, and an exact sequence (2.3) on X. Let Zg,
be the stack classifying a point of T,, and a splitting s : £ — Q of (2.3).

Write 24 g, for the stack classifying a point of T, as above and a section 5 : Sym? L —
Q2. The map hg : Zg, — Zo.g, over T, given by 5§ = s ® s is a closed immersion. One
has a diagram of dual generalized vector bundles Zy 5, — T, < Bunp, over 7,. Let
Fourz,, 4 : D™(Z2,7,) — D™ (Bunp, ) denote the corresponding Fourier transform functor.
Set

Kp, y = Fourz 4 h31Q¢[dim Bun,,]
This is a perverse sheaf on Bunp,, .

Let © Bun,, C Bun, be the open substack classifying £ € Bun,, with H*(X,Sym? L) =

0. Write ° Bunp, for the preimage of ° Bun,, under the map Bunp, — Bun,, sending the

above point to £. We will define a morphism 7p : Bunp, — Bung, whose restriction to
9Bung, is smooth (cf. Section 3.2.4).

Proposition 2.2.2. There is an isomorphism over Bunp,

~ % e B 1 im.rel(op) —~
(2.5) 7y Aut, ®(Qg[1](§))d el S Kp g

We also introduce a finite-dimensional analog of the extended theta-sheaf and calculate
all the *-fibres of Auty, (cf. Section 3).

In the case k = F, we show that Auty, is a geometric analog of the following matrix
coefficient of the Weil representation. Let y : Q(A)/Q(F) — Q} be the character

(2.6) X(w) = (D trya)/k Resw,)
zeX
Denote by (p,8y) a (unique up to isomorphism) irreducible representation of H,,(A) over

Q¢ with central character x. Let Gn(A) be the metaplectic group defined by this repre-
sentation

Gn(A) ={(g,0) | g € Gn(A), 0 € Aut Sy, plgm,w)os = oop(m,w) for (m,w) € H,(A)}
The sequence is exact
(2.7) 1= Q) = Gn(A) = Gu(A) > 1
Then 8, is naturally a representation of G,(A) = G,(A) x H,(A). For a subgroup

K C Gn(A) write K for its preimage in G, (A). One checks that 8, admits a unique
up to a multiple non zero H,,(F)-invariant functional © : 8;, — Q. The group G, (F)
acts naturally on the space of such functionals, this gives a splitting of (2.7) over G,,(F).
View G,,(F) C G,,(A) as a subgroup. The representation 8, also admits a unique up to
a multiple H,(O)-invariant vector vg, it similarly yields a splitting of (2.7) over G, (0).
This yields the subgroups G, (F) and G, (0) of G,(A). Let

(2'8) ¢ Gn(F)\Gn(A)/Gn(O) - QZ

be given by ¢(g) = O(guy), g € Gn(A). Then Iil/n(;n can be thought of as a geometric
analog of

Gn(F)\Gn(A)/G,(0),

and Auty, is a geometric counterpart of ¢.
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2.3. Models of the minimal sheaf. Fix n > 2, let H = SO,,, be the split orthogonal
group over k. We write H, when we need to express the dependence on n. Write 1}
for the standard representation of H. Write H for the Langlands dual group over Qp, so
H= S0,

The stack Bung classifies V' € Bung,, with a non degenerate symmetric form Sme(V) —
Ox and a compatible trivialization det V= Ox. One has m (H)=Z/2Z, and the con-
nected components Bun%; of Buny are naturally indexed by 6 € 1 (H).

2.3.1. P-model. Fix an n-dimensional isotropic subspace Uy C Vy. Let P C H be the
parabolic subgroup preserving Uy. The stack Bunp classifies U € Bun, and an exact
sequence of O x-modules

(2.9) 0—= AU =7 = 0x =0

Let Yp be the stack classifying U € Bun, and a section v : A2U — Q. So, Yp and
Bunp are dual generalized vector bundles over Bun,,.

Let Sp be the stack classifying U € Bun,, M € Bung, and a morphism s : U — M.
Let mp : 8p — Yp be the morphism sending (U, M, s) to (U, v), where v is the composition

AU A2 Q
Let Zp C Yp be the closed substack classifying (U,v) such that the generic rank of

v:U — U*®Qis at most 2. This is equivalent to requiring that A3v : AU — A3(U*®Q)
vanishes. Clearly, mp factors as

8p 5 Zp—Yp
Let Yp C Yp be the open substack given by the condition that v # 0. Let Sp and Zp
be the preimages of Yp in Sp and Zp respectively.

For d > 0 write X(@ for the d-th symmetric power of X. Stratify £ p by locally closed
substacks Zp ,, indexed by m > 0. Here Zp,, is given by the condition that there exists
an effective divisor D € X(™ such that v : A2U — Q(—D) is surjective. Note that

Zpo C ip is an open substack. The stack Zp,, can be seen as the stack classifying
D e X U e Bun,, M’ € Bun, together with a surjective morphism of O x-modules
U — M’, and an isomorphism det M’ = Q(—D).

Write BunfL for the connected component of Bun,, classifying U € Bun,, with degU = d.
Let Bun‘fg7 24 and so on denote the preimage of Bun‘fL in the corresponding stack.

The stack § p is smooth. The restriction
(2.10) 7p:8p — Lp
of mp is representable, proper and surjective, this is an isomorphism over Zp . For each
d € 7 the stack é% is irreducible, so i‘}_, is also irreducible.
Proposition 2.3.2. 1) If n > 4 then the map (2.10) is small, and one has canonically
(2.11) (rp) IC(8p) = IC(Zp)

o

2) Ifn = 3 then (2.10) is semi-small, and & IC(Zp,y) is a direct summand of (mp) IC(8p).
m>0

Let € Bun,, C Bun,, be the open substack given by two conditions HO(X ,A2U) = 0 and
H(X,Q® A2U) =0 for U € Bun,. Let °Sp, ¢ Bunp, “Yp and so on be the preimages of
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¢ Bun,, in the corresponding stacks. Write vp : Bunp — Bunpy for the map induced by
P — H. Its restriction ¢ Bunp — Bung is smooth.

Let Z(e, P) be the set of d € Z such that ¢2% is not empty. There is N € Z such that

if d < N then d € Z(e, P). Since i‘}g is irreducible, if d € Z(e, P) then eidp N Zp, is also
nonempty.

Write Foury,, 4 : D¥(Yp) — D™ (Bunp) for the Fourier transform functor over Bun,,.
Set

pr = FOuryPﬂz, IC(%]D)

Assume n > 4. We will construct a perverse sheaf Xy on Bung irreducible on each
connected component and defined up to a unique isomorphism (cf. Section 2.3.13 and
Definition 7.2.6 in Section 7.2.3). Here is our main result.

Theorem 2.3.3. For each d € Z(e, P) there exists an isomorphism over ¢ Bun
* A 1 dim.rel(vp) ~
(2.12) vpKy ® (Qe[l](§) i P) = Kpy

Let us formulate a conjectural version of the Hecke property of Ky. Write
H : Rep(H) x D(Buny) — D(X x Bung)

for the Hecke functors on Bungy (cf. [20], Section 2.2.1 for a precise definition). Let
o : G,, — H be the composition G,, — SLy — H, where the second map corresponds
to the subregular unipotent orbit, and the first one is the standard maximal torus. Let
Ey : Rep(H) — DP(Speck) be the functor W — Loc(Res? (W)), here Res” : Rep(H) —
Rep(G,y,) is the restiction via o.

Conjecture 2.3.4. There is a functor Ey : Rep(H) — DP(Speck) and an isomorphism
in D(X x Bung)

Hiz (W, K) S (Bo(W) @ Kn)[1](5) & By (17)

functorial in W € Rep(H).

In Appendix A we introduce a notion of an almost constant local system on Bung. In
Section 7.5 we prove the following weaker form of Conjecture 2.3.4.

Theorem 2.3.5. Let x € X. There is a functor Ey : Rep(H) — D(Bung) with the
following properties. If W € Rep(H) then E1(W) is a direct sum of shifted almost constant
local systems on Buny. There is an isomorphism functorial in W &€ Rep(I:I)

Hyg (W, Kg) = Eo(W) © K ® Er(W)

Remark 2.3.6. Consider Fourgli ¢(V}ﬂ<H) over the whole of Yp, we expect that it is the
extension by zero from Zp.

2.3.7. Q-model. Let W C Uy be a 1-dimensional subspace. Let Q@ C H be the parabolic
subgroup preserving Wy. The stack Bung classifies V' € Bung, ,, W € Bun; and an
exact sequence of O x-modules

(2.13) 0—-W=?7=V' -0

Let Y be the stack classifying W € Bun;, V' € Bung, , and¢: W — V' @ Q. So, Yo
and Bung are generalized vector bundles over Bun; x Bung, _,.
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Let Zg C Yg be the closed substack given by the condition that the composition
w2 & sym?(V' © Q) — 02,

vanishes, that is, the image of ¢ is isotropic.

Let “(Bun; x Bung, ,) € Bun; x Bung, , be the open substack given by H*(X, V' ®
W)=0and H'(X, V' @ W ®Q) =0 for W € Bun;, V' € Buny,_,.

Write “Yq, “Bung, “Z¢g and so on for the preimages of “(Bun; x Bung, ,) in the
corresponding stack. Let vg : Bung — Bung be the map induced by Q — H. Its
restriction * Bung — Bung is smooth.

Write Foury,, , : D™(Yq) — D~ (Bung) for the Fourier transform functor. Set

KQ-,U} = Fouryg,w IC(ZQ)

Conjecture 2.3.8. There exists an isomorphism over “ Bung
* ® 1 dim.rel(vq) —
(2.14) voXm @ (Q[1)(3)) —Kq.yp

We prove that P and (Q-models are compatible. Namely, in Section 5 we define an
open substack *Bunpng C Bunpng and show that the restrictions of Kq 4 and of Kp
to °*Bunpng are isomorphic up to a shift (cf. Proposition 5.1.1). Note that PNQ contains
a Borel subgroup of H. This implies that the pointwise Euler-Poincare characteristics of
Kp. (resp., of Kq ) are constant along the fibres of the projection vp : © Bunp — Bungy
(resp., vg : *Bung — Bung), cf. Proposition 5.5.1.

Remark 2.3.9. Consider Fourgé w(VZ?:KH) over the whole of Y, we expect it to be the
extension by zero from Zg.

2.3.10. R-model. Fix a 2-dimensional subspace Uy 2 C Uy. Let R C H be the parabolic
subgroup preserving Uy 2, we call it the Heisenberg parabolic. The stack Bunp classifies
V' € Buny with an isotropic subbundle Us C V', where Us € Bunsy. For (Uy C V) € Bung
write V' = V_5 /Uy € Bung, _,, where V_5 is the orthogonal complement of Us in V. We
also need the stack Bunp, _, classifying (U’ C V'), where V' € Bung, , and U’ is an
isotropic subbundle of rank n — 2.

Let Yr be the stack classifying (Uy C V) € Bung and a section vy : A2Uy; — Q. Let

n—2

fr : Yr — Bung be the projection forgetting vo. Write jr : Ygr — Ygr for the open
substack given by vy # 0.

Let X be the stack classifying (Us C V) € Bung and an upper modification ss :
Uy C M equipped with det M = Q. Here M € Bun, and s, is an inclusion of coherent
O x-modules. Let

mr:Xr = YR

be the map over Bung given by vy = A%sy. The map 7p is representable and proper. In
Section 6.0.6 we define a natural map

(2.15) pr : Xr — Bung,, _,

Let *(Buny x Bunp, ,) C Buny x Bunp, , be the open substack given by
(2.16) HY(X, Q@ A2U) =H' (X, U, @ U*®@Q) =0
for (U, U’ C V') € Buny x Bunp, _,. The projection is smooth

2.17 idxvp : b Buns; x Bunp ) — Buns x Bung,
n—2 n—2
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Let * Bunpng be the preimage of b(Bung x Bunp, _,) under the natural map Bunpng —
Buny x Bunp, ,. Write ” Bung for the image of the (smooth) map > Bunpnr — Bung.

Let *Yg (resp., "Yr) be the preimage of * Bung in Yr (resp., Yr).
Let *(Bung x Bung, ,) C Buny x Bung, _, be the intersection of the image of (2.17)
with the open substack given by the conditions

(2.18) HY(X, A\%U,) = HY(X, Q@ A%U) = HY (X, Q0 U, @ V') =0

Informally, (U, V') € “(Bung x Bung, ,) if Us is sufficiently ‘negative’ and V' is ‘suffi-
ciently stable’ compared to Us.

Let “Yg, “Ygr, ¥ Bung and so on denote the preimage of *(Buny x Bung, ,) in the
corresponding stack. Note that “ Bung C ” Bung.

Let vp : Bung — Bunyg be the map induced by R < H. Its restriction to * Bung is
smooth. The following is proved in Section 6.1.

Proposition 2.3.11. The complex
~% e B 1 im.rel(p
(2.19) (mr)1PR Auty, @(Q[1](5)) e

is perverse over the open substack *Yr C Yg.

Let Fr y be the intermediate extension of (2.19) under bQR < "Yp. Set
(2.20) Kry = (fR)!.rfRﬂ/, S D<(bBunR)

Conjecture 2.3.12. The complezx (2.20) is a perverse sheaf on ™ Bung, and there exists
an isomorphism over ¥ Bung

_ 1., N
(2.21) vrKn © (Qe[l}(i))d‘m'rel(”’*) — Kp,y

A partial evidence for Conjecture 2.3.12 is provided in Section 6. Namely, in Section 6.1
we define an open substack bBun}’fﬁ r C * Bunpng, which is a union of some connected
components of > Bunpnz. We show that the restrictions of Kpy and of Kg y to b Bunyl

are isomorphic up to a shift (cf. Corollary 6.1.5).

2.3.13. Actual construction of Kg. We don’t know in general if K is nonzero at the
generic point of each connected component of Bungy. For this reason it is not clear if
the isomorphisms of Theorem 2.3.3 or Conjectures 2.3.8,2.3.12 characterize Xy up to a
unique isomorphism.

Our actual construction of Xy is via the theta-lifting for the dual pair (G1, H). Write
Autg, g for the complex on Bung, X Bung introduced in ([20], Definition 2). This is the
kernel of the theta-lifting functor from Bung, to Bung.

Let qi : Bung, x Bung — Bung be the projection. Since Bung, is not of finite type,
the complex g Autg, g does not make sense literally (at the level of functions for k = F,
the corresponding integral is also divergent).

For a € Z write , Bung, C Bung, for the open substack classifying M € Bung, such
that for any line bundle L on X with deg(L) < a one has Hom(M, L) = 0. The stack
o Bung, is of finite type. Let ,q : o Bung, X Bung — Bung be the projection. Set

(2.22) oK = (aq1) Autg, g € D™ (Bungy)

For a € Z write , Bun,, C Bun,, for the open substack classifying U € Bun,, such that
for any line bundle L on X of degree < @ one has Hom(U, L) = 0. Write ¢ Bun,, ¢ Bunp
and so on for the preimage of , Bun,, in the corresponding stack.
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First, using the compatibilities of P and (-models, we find an open substack of finite
type Ug C Bunpg large enough such that the sheaf Xy we are looking for should not
vanish over UZ}{ for each b € Z/27Z, where U%, = Uy N Buns’q. We also find a € Z small
enough with the following property. Let

K = PH (oK) |1y

We prove that for each b € Z/2Z there is a unique irreducible subquotient Kq(  in K \uz;{
with the following properties. Let Ky be the intermediate extension of Ky o ® XKq(,1 under
Uy — Bunpg. Then Theorem 2.3.3 holds for this Kz. Moreover, all the other irreducible
subquotients of 5~<u are shifted almost constant local systems on Bung (cf. Proposi-
tion 7.2.5). The notion of an almost constant local system is introduced in Appendix A.

Moreover, for any i # 0 and any irreducible subquotient F' of PH'(,K) |u,,, let F be
the intermediate extension of F under Uy < Bung. Then F is a shifted almost constant
local system on Bung (cf. Remark 7.3.3).

Remark 2.3.14. Most of our results hold also for k = F,, the corresponding changes are
left to the reader. Part 2) of Proposition 2.3.2 holds over k algebraically closed only as it
uses the decomposition theorem ([2], Corollary 5.4.6).

2.4. In Section 8 we propose one more conjectural construction of the perverse sheaf Xy
via residues of geometric Eisenstein series. We do not completely check that it indeed
produces K except in cases ¢ = 0 and g = 1. In the present paper, the construction via
FEisenstein series for us is rather a way to calculate Ky explicitly in these particular cases.

2.4.1. Case g = 0. Recall that Buny admits the Shatz stratification indexed by dom-
inant coweights A}, of H (cf. Section refss: 8.7). Write Shatz* for the Shatz stratum
corresponding to \ € AE. For b € Z/2Z write OSh® for the open Shatz stratum in Bunz}{.
For b= 0 (resp., b=1) let A= (1,1,0,...,0) (resp., A =(1,1,1,0,...,0)). We show that
for each b € Z /27 the stack Bunl}{ —OShY is irreducible, and its open Shatz stratum is
Shatz*. Call Shatz® the subregular Shatz stratum in Bunl}{ by analogy with subregular
unipotent orbits.

Proposition 2.4.2. Assume g = 0. For each b € 727 one has Kg — 1C(Shatz*) over
Bunii{, where Shatz* is the subregular Shatz stratum in Bun?q.

2.4.3. Case g = 1. In Section 8.8 we introduce an open substack W%, C Bun?q with the
following property. Let T' C H be the standard maximal torus, W be the Weyl group
of (T,H). Let v2 : Bunj — Bun’ be the natural map. Then over WY, the map v is
a Galois covering with Galois group W. For an irreducible representation o of W write
L, for the perverse sheaf on Bung, the intermediate extension under W9, — Bun’, of
the isotypic component of (v9.),Qy lwo, corresponding to . Then L, is an irreducible
perverse sheaf.
Recall that H' (X, up) = (Z/27)?. Let 7' : Speck — Bun}q2 be the map given by

V=Y A

a€H' (X, p2)

where the symmetric form on V is the orthogonal sum of the canonical forms A2 = Ox.
Here A, denotes the line bundle obtained from « via extension of scalars pus C G,,,. Note
that V' is semistable, it admits no isotropic line (or rank 2) subbundles of degree zero.
The map 7' is étale, write W}{,Z for its image. Actually, W}qz is the classifying stack of
(Z.)27)3.
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Let f!:Buny, x Bun}; _ — Buny be the map sending (V,V’) to V & V', the sym-
metric form being the orthogonal direct sum of forms for V,V’. The restriction of f! to
Wiy, x WY is étale, write W, for the image of Wi, x WY, under f!.

Recall that the symmetric group 5, is naturally a quotient of W. The standard repre-
sentation of S,, in @? by permutations decomposes as Q¢ @ 0, where o, is an irreducible
(n — 1)-dimensional representation. View o, as a representation of W. Let W/ C W
be the stabilizor of the coweight (1,0,...,0) in W. The induced representation ind%,@g
from the trivial representation decomposes as

ind%;@g f—\;@é D On ® 0-7/'7,,

where o, is irreducible with dim o], = n. In fact, o}, is the reflection representation of W
in the sense of ([10], Section 2), so makes sense for any split reductive group.

Proposition 2.4.4. Assume g = 1. Qver Bun(l){ the perverse sheaf Xy is isomorphic to
Lor . The restriction of Ky under the étale map

freWh, x WY — Buny

is isomorphic to the irreducible perverse sheaf QX L, _,. In particular, over WY, (resp.,
Wi, ) the perverse sheaf Ky is a local system of rank n (resp., n—3). Forn = 4 this local
system over W1, is of order two.

Since Kz does not vanish at each generic point of Bung, the isomorphism (2.12) of
Theorem 2.3.3 in the case ¢ = 1 determines Xy up to a unique isomorphism over each
connected component of Buny (cf. Proposition 7.4.1).

Remark 2.4.5. The isomorphism (2.12) does not hold over the whole of ¢ Bunp. Indeed,
Proposition 2.4.4 shows that for g = 1 it does not hold over ¢ Bun% and 0 ¢ Z(e, P).

2.5. In Section 9 we propose Conjecture 9.1.1 generalizing our construction for other
simple algebraic groups, which admit a maximal parabolic subgroup with an abelian
unipotent radical. Conjecture 9.1.1 should lead, in particular, to the geometric analogs of
the minimal representations for Fg and FE7.

3. EXTENDED THETA SHEAF

3.0.1. Keep notations of Section 2.2. Let V be a k-vector space of dimension d. Recall
that Sym?(V) is the quotient of V ® V by the subspace generated by the vectors v; ®
v — v ® vy, v; € V. Its dual identifies canonically with the space STQ(V*) of symmetric
tensors in V* ® V*. View ST?(V*) as the space of symmetric bilinear forms on V.

Let py : V — Sym? V be the map sending v to v @ v. It is finite, a Galois Sp-covering
over its image Im py with zero removed. Consider the diagram

AV v x VY pr s Sym?(V),
where evy is the natural pairing. Write Foury 4 : D’(V* x Sym?(V)) =5 D*(V* x ST?(V*))
for the Fourier transform along Sym? V. Set

(3.1) Sy = Fours 4 ((id xpy )revi, L) [2d](d),

where e stands for ‘extended’. This is a perverse sheaf on V*xST?(V*), and D(Sy) = Sy -
canonically.
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Let o be the automorphism of V' of multiplication by —1. Then o™ evy, Ly — evy L.
Since the characteristic is not 2, (ev} £,)®? is nontrivial for d > 0, and

(pv x id)evy Ly [2d]

is an irreducible perverse sheaf. Thus, Sy is also irreducible.

Let i : Speck < V* be the zero section. For the map i xid : ST?(V*) < V* x ST?(V*)
set

. s 1\ ¢ Qe d

Sy = (i x id)" Sy [~d)(~ )

Then Sy identifies canonically with the perverse sheaf introduced in ([19], Section 4.1).
In this sense Sy, extends Sy. Note that Sy is GL(V')-equivariant.

Let py : V*xST?(V*) — (V*xST?(V*))/ GL(V) denote the stack quotient. Let Sy, be

an irreducible perverse sheaf on (V* x ST?(V*))/ GL(V) equipped with an isomorphism

PV Sy [dQ](g) — Sy, The perverse sheaf S, is defined up to a unique isomorphism.

Remark 3.0.2. For b : V — V* with b* = b let B, : V. — A! be the map v — (v,bv).
One has a usual ambiguity in identifying ST?(V*) with Sym?*(V*), namely, b goes to S,
or %p.

2

3.0.3. Let Q;(V) C ST?(V*) be the locally closed subscheme of b : V — V* symmetric
such that dimKerb = i. Let Q5(V) C V* x Q;(V) be the closed subscheme of pairs (v*, b)
such that v* € (V/Vp)*, where V) = Kerb.

Proposition 3.0.4. The x-restriction of Sy, to V* x Q. (V) is the extension by zero from

Q}(V) of a GL(V)-equivariant rank one local system placed in usual cohomological degree
—d+i—d(d+1)/2.

Proof. For b : V. — V* with b* = b and v* € V* let By, : V — Al be the map
v = (v,bv) + (v,v*). Let Vj = Kerb and pg : V. — V/Vj be the projection. Then
(Po)18, Ly will vanish unless v* € (V/Vp)*.

We are reduced to the case Vy = 0. In this case, over the algebraic closure k, in a
suitable affine coordinates of V' the quadratic form v — By~ (v) writes as (z1,...,2q) —
22 + ...+ 22 + a for some a € k. Our assertion follows now from ([19], Lemma 3). O

Let ¢y : V* x Qo(V) — Al be the map (v*,b) — +(v*,b~'v*). Here we have viewed
b € Qo(V) as a symmetric isomorphism b : V=V*. Let gy denote the composition
V*x Qo(V) = Qo(V) — ST*(V*), where the first map is the projection.

Proposition 3.0.5. There is a canonical isomorphism over V* x Qo(V)

* e % d
Py Ly @ Sy, = qy Sy [d](g)
Proof. Let (v*,b) € V* x Qo(V) and v € V. The change of variables w = v + b~ 1v*/2
gives (v, bv) + (v,v*) = (w,bw) — 2 (b~'v*,v*). Our assertion follows. O

3.0.6. We will need a relative version of the above construction. Let S be a smooth stack
locally of finite type. Let V — S be a vector bundle of rank d. For the diagram as above

AL LYV g VP P g Sym2(V)
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write Foury ,, : D(V* x g Sym? V) = D?(V* x g ST?(V*)) for the Fourier transform along
Sym? V. By abuse of notation, we also denote

(3.2) Sy, = Fourg y ((id xpy )1evyLy) (@4[1](%))2d+dims
Note that V yields a morphism of stacks

ay : V* xg ST3(V*) = (V* x ST?(V*))/ GL(V)
and (3.2) is canonically isomorphic to aySj, ® (Qe[1](3))dim-rel(av),

3.1. Write G,, for the group scheme on X of automorphisms of My = O™ G Q™ preserving
the natural symplectic form A2My — Q. Write H, = My @ Q for the corresponding
Heisenberg group with operation

1
(mq,w1)(ma,wa) = (M1 + ma, w1 +w;y + §<m1,m2>)

The group scheme G,, acts on H,, by group automorphisms so that g € G,, sends (m,w) €
H,, to (gm,w). Write an element of G,, = G,, x H,, as (g, (m,w)) with g € G, (m,w) € H,
then the product in G,, is given by

(91, (m1,w1))(g2, (M2, w2)) = (9192, (951m1,w1)(m2,wz))

Recall the subgroup P,, C G,, (cf. Section 2.2). The stack Bunp, classifies £ € Bun,, and
an exact sequence 0 — Sym? L —? — Q — 0 on X, it gives rise to an exact sequence
0=>L—->M—=>L"®Q—0with M € Bung,,.

3.2. For this subsection we assume k = IF,. Write L = O", this is a lagrangian subbundle
in Mo=L®L*®O.

Write §(L* ® 2(A)) for the Schwarz space of locally constant Qg-valued functions with
compact support on L* ® Q(A). This is a model of the Weil representation of H,(A), in
which the metaplectic extension (2.7) naturally splits over P,,(A). The purpose of this
section is to give an explicit formula for the restriction

op Pn(F)\Pn(A)/Pn(O) - @é

of (2.8). Recall the character x : Q(A)/Q(0) — Q} given by (2.6). The action of P, (A)
in §(L* ® Q(A)) is given by the following formulas.

Forly € L(A),l7 € L*®@0Q(A),w € Q(A) and f € §(L*®Q(A)) the action of (I; +17,w) €
H,(A) on f is the function

e L @QA) — x(w+ 1" 0L)+ %(l}‘,lﬁ)f(l* +17)

Write A* for the ideles of X. For a € A* write | a |€ Qf for the absolute value of a.
For a vector bundle W on X and g € GL(W)(A) write | g |=| det g |.
Let a € GL(L)(A), b € Hom(L* ® ©, L)(A). The action of

a b
(3.3) 9= < o« L ) € Pu(A)
on f is the function

e L' @A) |a b X(3 @1, b)) f(a'T)
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Let g be given by (3.3) and m =1; + 1 € My(A), w € Q(A). Tt follows that the action of
(g9, (m,w)) € P, (A) on f is the function

1 1 1
el @QA) m | al® x(5(a7, 0 0)x(w + (a1, ) + S (1, ) f(a™l + 1)
The theta-functional © : §(L* ® Q(A)) — Qq (cf. Section 2.2) sends f to

>

I*eL*QQ(F)

Let ¢o be the characteristic function of L* ® Q(0), this is a unique up to a multiple
H,,(0)-invariant vector in 8(L* ® Q(A)). So, the value of ¢p on (g, (m,w)) € P,(A) is

1 1 1
(3.4) S0 el G BTN+ @ ) + S0 ) do(a”l + 1)
I*eL*RQ(F)

One has a canonical bijection
(3.5) {£L € Bun, (k),a: L(F)= L(F)} = GL(L)(A)/GL(L)(0)
One also has a canonical bijection
Bung, (k) = Pr(F)\Py(A)/Pr(0),

where Bunp, (k) is the set of isomorphism classes of P,-torsors on X. Recall that Bunp,_
is the stack classifying pairs of exact sequences (2.3) and (2.4) on X (cf. Section 2.2).

Consider a point Fp, € Bunp, given by this pair of exact sequences and corresponding
to the double class of (g,(m,w)) € P,(A). We assume that g is given by (3.3). Let
L € Bun, together with a trivialization « : L(F)= L(F) correspond to a GL(L)(0) €
GL(L)(A)/ GL(L)(0) via (3.5).

For each closed point € X write F,, for the completion of F' at z, write O, C F, for
the completion of Ox at . For z € X we have a diagram

LYF,) % LHF,)
U @]

*

a* LA (0,) 5 L£4(0,),

where the horizonal arrows are isomorphisms.

Recall that H' (X, £) = L(A)/(L(F) 4 £(0O)) canonically. In particular,
(3.6) HY(X, L*2Q) S L*@Q(A)/(a* (L* @ Q)(0) + (L* @ Q)(F))

The extension (2.3) is given by the image of a* !} € L* @ Q(A) in (3.6). Clearly, (3.4)
vanishes unless there is I* € L* ® Q(F) with a*I* + 17 € L* @ Q(0). That is, the image of
a*~'f in HY(X, £* ® Q) vanishes and (2.3) splits. So, ¢p(Tp,) = 0 unless (2.3) splits.

Now it is convenient to assume that I = 0. Fix a splitting £ = Q & £ of (2.3). Since
Q'@ Sym*(L) = Q@ (2 '@ Sym? L) @ L, the datum of Fp, becomes a datum of three
exact sequences (2.1) given by ¢ € H'(X,Q),

(3.7) 0— Sym?L =? - Q—=0
given by v € H'(X,Q~! ® Sym* £) and
(3.8) 0—-L—=27—=-0-=0

given by § € H'(X, £). Note that & corresponds to the image of I; in H' (X, £), and € is
the image of w in Q(A)/(Q(F) + 2(0)).
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Note that
(" e " ®Q(F) |a"l" € L ® Q(0)} & HY(X,L* ®Q)
is a bijection, so

(3.9) ¢(Fe)= > lalPy({s®s7) +(5,0) +w)

s€HO(X,L*®0)

3.2.1. Geometrization. Let fp : Bunp, — Bun, be the map sending a pair (2.3) and (2.4)
to £. Write . Bun,, C Bun,, for the open substack of £ € Bun,, given by H’(X,£) = 0.
Write . Bunp, C Bunp, for the preimage of . Bun,, under fp.

Let vy : Y — . Bunp, be the stack classifying a point of . Bunp, as above together with
a splitting of (2.3). Note that vy is a torsor under a vector bundle on . Bunp, with fibre
Hom(£, Q).

The stack Y can be seen as the stack classifying £ € . Bun,, and exact sequences (2.1)
given by ¢ € H(X,Q), (3.7) given by v € H'(X,Q! ® Sym? £) and (3.8) given by
§ € H(X, L).

Let px : X — Y be the stack over Y classifying the same objects as Y together with s €
Hom(£L, ). Let evy : X — A! be the map sending the above point to £+ (s®s, ) + (s, d).
It is understood that s ® s € Hom(Sym? L, Q?). Set

* & 1 im
Ky =prievyly ® (@6[1](5)0l X

where dim X is the dimension of the corresponding connected component of X. Then Ky 4
is a geometric analog of (3.9).

3.2.2. Let V — .Bun, be the vector bundle with fibre Hom(£, ) at £ € .Bun,. The
dual vector bundle V* — .Bun,, classifies £ € .Bun, and an extension (3.8) on X. Set
W =7V X_pun, V*. Let Wo — V* be the stack classifying a point of V* together with
an element of Hom(Sym2 £,02). Let W3 — V* be the stack classifying a point of V* as
above together with an exact sequence (3.7) on X. Write Foury 4 : D(W3) — D(W3) for
the Fourier transform over V*.

Let paw : W — Wj be the map over V* sending s € Hom(£, Q) to s®@s € Hom(Sym? £, Q2).
The map pa,w is finite, an S>-covering over the image of Im p w with removed zero sec-
tion. Let evy : W — A! be the natural pairing between V and V*. Then Y = W3 x Bung
naturally. By definition,

— * * ~ 1 im im n
Ky 4 = Fouryw 4 ((p2,w)revigly) K evg Ly @ (lel(g))d Wehdim Bung

As in Section 3.0.1, one shows now that Ky, is a perverse sheaf irreducible over each
connected component of Y, and D(Ky ) = Ky -1 canonically.
There is a natural map

fw : Wi — V* X_gun, ST2(V*)
defined as follows. The transpose to the linear map Sym? H’(X, £*®Q) — Hom(Sym? £, Q?)
is a map H' (X, Q" '®Sym? £) — ST?(H' (X, £)) denoted v +— 7. Then fy sends (£, 7, )
to (£,7%,6). For the perverse sheaf Sy, on V* X pun, ST?(V*) defined in Section 3.0.6 one
gets an isomorphism

-~ * * B 1 im.re im n
Ky ™ (f305 B evfy L)  (Quf1] () mrellfw) tdimBunn
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Proposition 3.2.3. There is a canonical isomorphism over Y
_ 1w —
vy Kp, 4 @ (Qe{l](i))dlm'rel(”“’) — Ky
Proof. Let T, be the preimage of .Bun,, in 7,, and similarly for .Zg,, .Z27,. Let
Vs — . Bun,, be the stack classifying £ € .Bun, and a section

5:Sym?*(L @ Q) — Q
Let hy : V — V5 be the morphism over . Bun,, sending s; € Hom(£,) to 5 = s ® s with

5= (s1,id) : L& Q — Q. Let vy : .Bun, — T, be the map sending £ to £ = £ @& Q.
After the base change by v, the diagram

Cz,g'n — cTn — ¢ Bun]pn
Neheo T
CZQ,‘Tn
identifies with the diagram

V —- .Bun, <« Y
Nehr T
Vo
We have V X_pun, Y= X naturally. The stacks V3 and Y are dual (generalized) vector
bundles over . Bun,,, write evyy : Vo X_pun, Y — Al for the natural pairing. The diagram
commutes
v X . Bun, y = X
\L ho xid \L evy
VZ XC Bun,, ‘H egy Al
Our assertion follows. O

3.2.4. Let vp : Bunp, — Bung, be the morphism induced by the inclusion P,, = G,,. We

lift it to a morphism Zp : Bunp, — BTl;lGn sending a point (2.3) and (2.4) of Bung, to (€ <>
My, B). Here B = det RT'(X, L* ® Q) is equipped with the Z/2Z-graded isomorphism

B2 det RI'(X, M)

given by the exact sequence 0 — L — M — L* ® Q2 — 0. We have denoted here
M = L_1/Q, where L_; is the orthogonal complement of Q in M;.

Recall the open substack ° Bun,, C .Bun, introduced in Sﬁcfion 2.2. The restriction
vp: 0 Bunp, — Bung, of vp is smooth, hence Up : 0 Bunp, — Bung,, is also smooth.

Recall that o Bung, is the preimage of ( Bung, under pg : Bung, — Bung,. For a
point (2 C L_y; C M;) of ¢Bung, the exact sequence 0 — Q — L_y — M — 0 splits
canonically, this yields an isomorphism ¢ Bung — ¢ Bung x Bung sending the above point
to M = L_1/Q and (2.1), which is the push-forward of 0 - Ly — M; — O — 0 by
L_; — Q. This in turn gives the isomorphism (2.2).

We first establish the following part of Proposition 2.2.2.

Lemma 3.2.5. There is an isomorphism (2.5) over ° Bunp,, .

Proof. Write %Y for the preimage of ° Bunp, under vy : Y — .Bunp,. Then vy : Y —
YBunp, is a torsor under the vector bundle V x_pgun, ° Bunp, . Since both sides of (2.5)
are perverse, it suffices to establish an isomorphism over %Y

* ~ % e B 1 im.rel(v im.re -~
(3.10) vyvp Auty, ®(Qe[1](§))d el rdimrele) = gy |,
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Write Y for the preimage of oBung, under 7p o vy : %Y — Bung,. Since Ky, is
irreducible over each connected component of Y, and Autz is the intermediate extension
from ¢ ]/371?1@“, it suffices to establish the isomorphism (3.10) over JY.

Let o Bunp, be the preimage of o Bung, in Bunp,, and similarly for  Bunp, .

The stack § Bunp, classifies £ € © Bun,,, an exact sequence (2.1) given by & € H' (X, Q)
and a point (2.4) of ¢ Bunp, given by v; € H(X, Q! ® Sym* £). Now JY can be seen as
a stack classifying a point (£,71,&1) € ) Bunp, and a section s; : £ — Q (here s; gives a
new splitting of the exact sequence 0 - Q — Q@® L — L — 0).

Another description of Y was given in Section 3.2.1, namely, it is a stack classifying
£ € °Bun, and the exact sequences (2.1) given by ¢ € H'(X,Q), (3.7) given by v €
HY(X,Q! ® Sym? £) and (3.8) given by § € H'(X, £).

Given a point in the first description of §Y, the corresponding point (£,£,7v,d) € §Y in
the second description is as follows. We have to take the push-forward of

(71) 51) € Eth(Qa Sme(L @ Q))
by € ® € : Sym*(L @& Q) — Sym*(L @ Q). Here e is the automorphism of £ @ Q acting
trivially on © and whose restriction to £ is (id, s1) : £ — £ ® Q. Thus, v = 71, 0 is the
push-forward of v by s1 ® id +id ®s; : Sym2 L3>L@Q,and € =& + (51 ® s1,71)-

To simplify notations, we give the rest of the proof at the level of functions, the ge-
ometrization is straightforward. By ([19], Proposition 7), the LHS of (3.10) at (£, 1, &1, $1)
89 equals

we) Y e um)
u€Hom(L,Q)
and the RHS of (3.10) equals
Yoo W+ ueu+Gu) = Y Y&+ (s +u) @ (st +u),m))
u€Hom(L,Q) u€Hom(L,Q)
We are done. (]

Remark 3.2.6. The isomorphism of Lemma 3.2.5 is not canonical, it depends on a choice
of an isomorphism in ([19], Proposition 7).

3.3. End of the proof of Proposition 2.2.2. Our strategy is to extend the isomo-
prhism of Lemma 3.2.5 to the whole of Bunp_ . Our argument is inspired by ([21], Propo-
sition 1).

Pick € X,i > 0, set D = ix. For a vector bundle N on X let Np = N/N(-D).

3.3.1. Let b: T, — T,, be map sending £ and (2.3) to the exact sequence obtained as the
pull-back by £L(—D) — £. The map b is an affine fibration, a torsor for the vector bundle
with fibre Hom(L' (D), Q(D) /) over the point of T,

(3.11) 0-Q—=L =L =0

Recall that Bunp, classifies a point (2.3) of 7,, and an exact sequence (2.4).

Let Hp, = Bunp, xg,7,, where we used the map b to define the fibred product. The
stack Hp,, classifies a collection: a point (2.3) of T,, for which we get the pull-back sequence
(3.11) with £' = £L(—D), and an exact sequence
(3.12) 0— Sym?L’ =7 > Q=0

We get a diagram

Bunp, “ Hp, 4 Bunp,
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where a™ = pry, and o is the map sending the above point to the collection: (2.3) and
the exact sequence (2.4), which is the push-out of (3.12) by Sym? £’ — Sym? L.

The map a* is an affine fibration. More precisely, for a point of Bunp, given by a pair
(2.3) and (2.4), let L' = L(—D), let (3.11) be the pull-back of (2.3) by £’ < L. Then the
fibre of a* over the point given by (2.3) and (2.4) is the scheme of sections of the induced
exact sequence

(3.13) 0 — Sym?L/Sym? L’ —? - Q=0
We will need the fact that dimy(Sym? £/ Sym? L) = in(n + 2).

Recall that Z 7, classifies a point (2.3) of T,, and a section 5 : Sym? £ — Q2. We have
the maps of generalized vector bundles over T,

Bunp, % 3Hp, 22,7, o Zo, 7, X7, Tn
N4 N\ !
T T,

where we used the map b to define the fibred product in the right diagrams, and the right
vertical arrow is pry. Here ‘a* is the transpose to a®. The ‘correct’ relative dimension
of ta*™ is —ni(n + 2).

We claim that the following diagram is cartesian

Z"Tn i) ijn ijn ’.Tn
g 4 hoxid

ta<—

Zog, = Zo2g3, X7, Tn

n

Here the map c sends (2.3) and s : £ — Q to the restriction s’ : L' — Q of s to L' C L.
The ‘correct’ relative dimension of ¢ is —ni. We used that x(Lp) = ni.
This gives an isomorphism

(314) aﬁ(aﬁ)*Kme :Kpnw[*ni(n + ].)]

The shift that appears in (3.14 ) is the difference between the ‘correct’ relative dimensions
of ¢ and ta*.
We have a commutative diagram

Bun]pn l<l: j‘fpn
1 3

Bunp, pz Bunp,,
where the map ap is that of ([21], proof of Proposition 1), and the right vertical arrow is

o
the composition Hp, “> Bunp, — Bunp, .

3.3.2. Let p p Bung,, be the stack classifying M € Bung,, and alagrangian O p-submodule
Lp C Mp. Let w=(1,...,1) be the coweight of G,, as in ([21], Proposition 1).

Let p pHg, be the stack classifying M, M’ € Bung,, M =M’ |x_, with M’ in
the position iw with respect to M at x, a lagrangian subbundle Lp C Mp such that
LpNM'/M(—D) = 0. We have the map pp : Bunp, — p pBung, from loc.cit.

Let p p Bung, be the stack classifying (M, Lp) € p pBung,, and a lifting of M to
(2 = M;) € Bung, . For such a point we get a lagrangian submodule Lp C M;p, which
is the preimage of Lp under M_1p — Mp. We have Qp C Lp. We also get an exact
sequence of torsion sheaves on X

(315) OHED*)M_lD‘)LB(@Q‘)O
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Let p,pHg, be the stack classifying (2@ C My,Lp C Mp) € p pBung,, a lifting
of (M,Lp) to a point (M,M’',Lp) € p pHg,, then (M'(—D) + M(—D))/M(—D) is
lagrangian in Mp, and provides a splitting ¢ : L}, ® Q — Mp of the exact sequence

0—-Lp—>Mp—L,o0—0

The last piece of data is an extension of ¢ to a splitting ¢ : L}, ® @ — M_;p of the exact
sequence (3.15). The datum of ¢ can also be equivalently described as a section ¢ making
the following diagram commuttaive

0—-QD)/QY— M_(D)/(M_1(-D)+Q) — M(D)/M(-D) —0
(3.16) NP 0
M'/M(=D)

and compatible with £.
Let d: p pHg, — p.pBung, be the map sending the above point to (2 C M, Lp) €
p,p Bung,. We get a diagram

a*

Bunpn j‘f[p"
(3.17) L b fac

d
p,pBung, < ppHg,

Here f sends (2.3) and (2.4) to (2 C My, Lp), where Lp = £ |p.

The map fg¢ sends a point 7 given by (2.3) and (3.12) to the following collection. Let
(Q € My,Lp) = fa* (). The exact sequence 0 — Sym? L’ —? — O — 0 yields M’
together with an isomorphism M = M’ |x_, such that (M,M’,Lp) € ppHg,. The
collection (2 C My, L C M) = a* (n) is equipped with a natural splitting of (3.13), which
gives the desired extension ¢ of ¢.

The map f : Bunp, — p,pBung, is obtained by the base change Bung, — Bung,
from the map pp : Bunp, = p p Bung,,.

One checks that (3.17) is cartesian.

As in ([20], proof of Prop. 1), we have the map vy p : p pHg, — Bung, sending
(M,M',Lp) to M’. We lift it to a morphism dy¢ : p,pHg, — Bung, sending the above
point to (Q C M{) defined as follows. First, let M| + M; = My + Im(%). Let M{ N M,
denote the orthogonal complement of M; + M; with respect to the bilinear form, so
M{ N M; C My C M+ M, yields an exact sequence

T T
Lp Lp @ D),

where the vertical arrows are canonical isomorphisms. The datum of M’ C M (D) provides
also a splitting ¢ of the latter exact sequence. We define finally M{NM; C M| C M|+ M,
by the property that

M!/M, A M;, = L% @ QD)p <> (M + My) /M. 0 M,

3.3.3. As in ([21], proof of Proposition 1), we let 7, : Bunp, — Bung, be the exten-
sion of v, : Bunp, — Bung,, where we add the line B = det RT'(X, L) equipped with
B2= det RU(X, M). Recall the map pp : Bunp, — p p Eﬁign from loc.cit., it extends
pp adding the same B. Recall the map 7p : Bunp, — I?lfnGn defined similarly, for which
we add B = det RT(X, L) ¥ det RD(X, L* ® Q) with B2 det RI'(X, M).
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Let p.p ﬁﬁl@n be obtained from p pBung, by the base change %Gn — Bung,,.
We extend f to a morphism f : Bunp, — p,p E/Sﬁ/ngn in the same way, that is, adding
B = det RI'(X, L) equipped with B2 = det R['(X, M).

Denote by p, pJ:CGn the stack obtained from p pJHg, by the base change %Gn —
Bung, , that is, we add a line B equipped with B2 = det R['(X, M).

The diagram (3.17) extends to the following one

Bunp, P Hp, — DBunp,
(3.18) o 17 4 Fac 4o

bl d -
Bungn & D,P Bungn — D7p9'f¢;,n = Bung

n?

where the square is cartesian. Here fj{ is the extension of the map fq¢, where we add
the line B = det RT(X, £) with B2 det R['(X, M). The map d sends a collection (2 C
My, M', Lp,t,B) to (@ C My,Lp,B). The map vp sends (2 C M, Lp,B) to (Q C
My, B).

Recall the map o3¢ p : p.pHe, — ]§1\1;1Gn defined in (]20], proof of Prop. 1). We lift it
to the map dy¢ sending

(QCMl,M/—\;M/ |X7w7LD CMD,t,'B)
to (2 C My, B’), where (2 C M{) = dsc( € M1, M=M' |x_2,Lp C Mp,t) and

B’ = B®@dety(Lp)* is equipped with the isomorphism B2 = det RT'(X, M’) defined as
for U3¢ p in loc.cit.

3.3.4. Write %/ Bunp, C Bunp, the open substack given by H’(X,Sym?(£(—D))) = 0.
It coincides with the stack a* (a™) " (*Bungp, ).

Now the isomorphism of Lemma 3.2.5 and the diagram (3.18) yield an isomorphism
over %¢ Bunp

(3.19) ai (a”)* Kp, 4 = Kp, y[—ni(n + 1)] = f*didj; Aut[dim. rel],
where dim. rel is the function of the connected component of Bunp, whose value at (€ C
My, L C M) is
dim Bun,, — dim Bung, —x (2! ® Sym*(£(-D)))
Restricting (3.19) to the open substack * Bunp, C % Bunp, and applying Lemma 3.2.5
again, we get an isomorphism of shifted perverse sheaves over ° Bunp,

(3.20) oy Autl, = frdidse Autg[2in(n + 1)]

3.3.5. Recall that in ([21], Proof of Proposition 1) we have denoted by & Bunp, C Bunp,
the open substack given by the property H(X, (Sym? £)(D)) = 0, it was shown in loc.cit.
that the restriction pp : % Bunp, — p.p %Gn is smooth, surjective and has connected
fibres generically. Let % Bunp, be the preimage of §, Bunp, under Bunp, — Bunp,. We
conclude that the restriction of f to % Bunp, is smooth.

The map f : % Bunp, — p,p EI\I;I(G," is obtained from pp : OD Bunp, — p,p EI\I;IG” by
the base change Bung, — Bung,. So, f : %Bun]pn — D,P ]/B\u/n(;n is smooth, surjective
and has connected fibres generically.

We have & Bunp, C Bung,. So, the restriction of (3.20) to % Bunp, descends to an

isomorphism of shifted perverse sheaves over some open substack of p p Bung,

5 Aut, = didjc Aut[2in(n + 1)]
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Since the left hand side is an irreducible perverse sheaf, both sides are intermediate ex-
tensions from the generic point, and the latter isomorphism holds over p p Bung,, .
Now from (3.19) we get an isomorphism over ! Bunp,

Kp, 5, = [0}, Aut§ [dim. el (7p)]

As the union of % Bunp, over i is Bunp, , Proposition 2.2.2 is proved.

4. P-MODEL AND THETA-LIFTING

4.1. Keep notations of Section 2.3. Let *" Bun,, C Bun,, be the open substack classifying
U € Bun,, such that H*(X,Q® A2U) = 0. Write *” Bunp for the preimage of ™ Bun,, in
Bunp. The restriction ** Bunp — Bung of vp is smooth, hence ¢ Bunp — Bung is also
smooth. .

To see that Sp is smooth, first consider the stack classifying M* € Buny equipped with
an isomorphism det M* = Q~!, a coherent sheaf F of generic rank n — 2 on X and an
exact sequence 0 - M* — L — F' — 0 on X. This stack is smooth, and its open substack

given by the condition that L is locally free identifies with § P.

Proof of Proposition 2.5.2. The connected components of Zp are 2% for d € Z, and 2%
is irreducible.

The stack Zp , is smooth for any m > 0. Consider its connected component U contain-
ing a point n = (s : U — M', D € X(™)), where U € Bun,,, M’ € Bun, is equipped with
det M’ = Q(—D), and s is surjective. One checks that the dimension of this connected
component is

m(1 —n) —2degU + (n* +3)(g — 1)

So, the codimension of U in the corresponding connected component of Zp equals m(n —
1). The fibre of (2.10) over 7 is the scheme of upper modifications M’ C M such that
div(M/M') = D. This fibre is connected and its dimension is m. Our assertion follows.

O

Our construction of Xy is based on the following explicit formula for Autg, m. Let
fs : 8p — Bung, xYp be the map sending (U > M) € 8p to the collection M € Bung,,
(U,v) € Yp with v : A2U — Q, where (U, v) is the image of (U, M, s) under 7p : 8p — Yp.
As in Section 2.3.1, by some abuse of notation, write

Foury, » : D™(Bung, xYp) — D™ (Bung, x Bunp)

for the Fourier transform over Bung, x Bun,,. The following is an immediate consequence
of ([21], Proposition 1).

Proposition 4.1.1. For the map id xvp : Bung, x Bunp — Bung, x Buny there is an
isomorphism

(11) (4 xwp) Autg, m &(Q1)(5)) ™ S Foury, o (fsr(@1)(3))"),

where b is a function of a connected component of 8p whose value at (U, M, s) € Sp equals
dim Bun,, + dim Bung, +x(U* @ M). O

Note that for the function b from Proposition 4.1.1 its restriction to Sp equals dim 8 p.

Recall that for a € Z one has the open substack , Bun,, € Bun, introduced in Sec-

tion 2.3.13. If @’ < a then , Bun,, C o Bun, is open. One checks that UZ « Bun,, = Bun,,.
ac
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Similarly, if ¢’ < a then , Bung, C . Bung, is open and UZCL Bung, = Bung,. For the
ac

complex oK given by (2.22) this implies the following.

Corollary 4.1.2. 1) For all a € Z there is an isomorphism over ,Yp.

(4.2) Foury! , vp(uK) ® (@5[1}(%))&“1*61(”) = 10(2p)

2) The isomorphism (4.2) still holds over ng with oK replaced by PHO(,K).

Proof. 1) Consider the restriction ,7p : Sp XBung, o« Bung, — Zp of the map mp from
Section 2.3.1. For the function b as in Proposition 4.1.1, this proposition yields an iso-
morphism over the whole of Bunp

b () © Q1)) 5 Foury, u((umr) @0 ](5)

Let us establish a canonical isomorphism
~ b, _
(4.3) (amp)1Qe[b](5) = 1C(Zp)
over the open substack agp of Yp. Counsider a k-point (s : U — M) of c%p. Assume
U € , Bun, then for any line bundle L on X with deg L < ¢ and any morphismy : M — L
the composition U > M % L vanishes. Since s is surjective at the generic point of X, y

also vanishes and M € , Bung,. Thus, (,7p)1Q = (7p)1Q; over a‘;p, and (4.3) follows
from Proposition 2.3.2. Part 1) follows.

2) Since vp : ¢ Bunp — Bung is smooth, the functor Fourg;)w vi[dim. rel(vp)] followed

by restriction to ¢Yp is exact for the perverse t-structures. O

The stack Bun,, is smooth, its connected components are indexed by d € Z. Namely,
the connected component Buni of Bun,, classifies U € Bun,, with degU = d. Write Bunf37
¢ Bun} and so on for the preimage of Bun? in the corresponding stack.

Write C(e, P) for the set of d € Z such that the stack ©Bun? from Section 2.3.1
is nonempty. For a € Z write ZBunfL for the preimage of , Bun, in eBuni. Given
d € C(e, P), the stack ¢ Bun’ is nonempty for a small enough. It is easy to see that for
de C(e,P) and g =0 (resp., g > 1) one has d < —n/2 (resp., d < —(g — 1)n/2).

Write Z(e, P) for the set of d € Z such that ei‘}; is not empty. Clearly, Z(e, P) C

C(e,P). If d € Z(e, P) then 2%.313 is not empty for a small enough. There is N = N(g)
such that if d < N then d € Z(e, P).

Definition 4.1.3. Let a,d € Z be such that 2% is nonempty. Then by Corollary 4.1.2
and Lemma 4.1.4 below, there is a unique irreducible subquotient aﬂ(‘}{ of the perverse
sheaf PH?(,K) equipped with an isomorphism

(14) Roury,, v (5K0) ® (@[1](3)) "™ 47) =5 10(2p)

over ZH%. The perverse sheaf aﬂC‘fq is defined up to a unique isomorphism. We can not
conclude for the moment that (4.4) holds over ¢Y%, as the LHS could apriori be a non
irreducible perverse sheaf.
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If @' < a and 2% is nonempty then ZLZ% is a~ulso nonempty. The open immersion
o Bung, — o Bung, yields a morphism ,K — ./ K, hence also a morphism of perverse
sheaves

(4.5) a: PHO(LK) = PHO (o K)

After applying the functor
Fourgi’w vp[dim. rel(vp)]

followed by restriction to fllj‘]ig, the map a becomes an isomorphism. By Lemma 4.1.4
below, a induces a natural isomorphism X% = X% . For d € Z(e, P) define a perverse
sheaf

X% € P(Bung)

as K¢ for any a small enough (such that ¢2% is nonempty). We see that K% is defined
up to a unique isomorphism. The perverse sheaf K¢, is equipped with an isomorphism

o
over e’ﬁ%

A .
Foury} , vp(Kf;) @ (Qe[l](§))dlm‘rel(””) — 1C(2Zp)

Lemma 4.1.4. Let f : A — B be an exact functor between abelian categories. Let
F,F' be two objects of A which are of finite length and o : F — F' a morphism in A.
Assume that R = f(F) is an irreducible object of B, and f(a) : f(F) — f(F') is an
isomorphism. Then F admits a biggest subobject Fy such that f(Fo) =0, let F} C F' be
the corresponding biggest subobject of F'. Then F/Fy admits a unique irreducible subobject
Fy, and f(F1) = R. Define F| C F'/F} similarly. Then « : Fy — F} and the induced map
a: Fy — FY is an isomorphism. We refer to Fy as the subquotient canonically associated
to (f, F).

Proof. Let G C F be a subobject such that f(G) = 0 and maximal with this property.
Let G; C F be another subobject such that f(G;1) = 0. Write G, for the image of G, in
F/G, let G be the preimage of G| under the projection F — F/G. Then f(G) = 0, so
G = G. Thus, G is the biggest subobject of F' such that f(G) = 0.

If Fy C F/Fy is an irreducible subobject then f(Fy) = R. Since f is exact this F} is
unique. Since « : Fy — a(Fp) is surjective, f(a) : f(Fo) — f(a(Fo)) is also surjective,
hence a(Fp) C Fjj. Our assertion follows. O

We will see in Section 7 that for all d € Z(e, P) of the same parity the perverse sheaves
IK%I are canonically isomorphic to each other (cf. Proposition 7.2.5).

5. COMPARISON OF P AND (Q-MODELS

5.1. Keep notations of Section 2.3. The stack Bunpng classifies a point (2.9) of Bunp
together with an exact sequence on X

(5.1) 0—-W—=U—-U =0

with W € Buny, U’ € Bun,_q. Write vp¢g : Bunpng — Bung and vg p : Bunpng —
Bunp for the natural maps. Write °(Bun; x Bun,,—1) C Bun; x Bun,_; for the open
substack given by
HY(X,U' @ W) = H(X,A2U") = Hom(U',W) =0
(5.2)
Hom(U',W @ Q) = H*(X,Q® A2U’) = 0
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for W € Buny, U’ € Bun,_;. Write °*Bunpng for the preimage of °(Bun; x Bun,_1) in
Bunme.
Our purpose is to prove the following.

Proposition 5.1.1. There ezists an isomorphism on *Bunpng

* 0 1 im.rel(v o~ % ~ 1 im.rel(v,
(5.3) vhaKow ® Q)™ D F g p Ky © (Qil1)(5) el 0er)

Remark 5.1.2. Recall that Kp, is perverse over the open substack of Bunp given by
HO(X, A2U) = 0 for a point (2.9) of Bunp, and Kq.,y is perverse over the open substack
of Bung given by H(X, W ®@V") = 0 for a point (2.13) of Bung. The restrictions of vp g
and of vg p to °Bunpng are smooth, so both sides of (5.3) are perverse. We will see in
the course of the proof of Proposition 5.2.4 below that both sides of (5.3) are irreducible
over each connected component of *Bunpng.

5.2. The stack Bunpng can also be seen as the stack classifying exact sequences on X
(5.4) 0= AU =700

and (2.13), where we denoted by V’ the corresponding point of Bung, .

Write 8 for the stack classifying a point (W,U’) € ®(Bun; x Bun,,_1) together with the
exact sequences (5.1) and (5.4) on X.

Let T be the stack over 8§ with fibre Hom(W @ U’,Q?). The conditions (5.2) imply that
Ext' (W @ U’,Q) = 0, so T is a vector bundle. The natural projection °Bunpng — 8 is a
torsor under the vector bundle T7*. Denote by

(5.5) 0T =& —>0—-0

the corresponding exact sequence of Og-modules, so “Bunpng is the preimage of 1 in £*.
Let T be stack over 8 with fibre Hom(W, V' ® ). The conditions (5.2) imply that Tq
is a vector bundle over 8, and for a point of 8 the sequence is exact

(5.6) 0 — Hom(W,U’ ® Q) — Hom(W, V' ® Q) — Hom(W & U’,Q) — 0

Indeed, (5.2) imply that Ext*(W, U’ ® Q) = 0.

Define a full subcategory P" (Tg) C P(Tg) singled out by the following equivari-
ance condition. Let VJg be the vector bundle over § classifying a point of 8§ and
t; € Hom(W, U’ ® Q). So, the sequence of vector bundles on 8 is exact

(5.7) 0=Vig—=T9—=T—=0

The vector bundle VT acts on T by translations over 8. Write evyg, : VIg — Al for
the map sending (W, U’, (5.4), (5.1),t1) to the pairing of ¢; with (5.1). Define PV (Tg) C
P(Tq) as the full subcategory of (VJq, vy Ly-1)-equivariant perverse sheaves on Tg.
For F' € P(Tp) this means that for the action and the projection maps act, pr : VJg Xs
Tqo — Tg there is an isomorphism

act” F'= pr" F'® evyq, Ly-1

whose restriction to the unit section is the identity, and it satisfies the corresponding
associativity condition. If such an isomorphism exists then it is unique. Write D' (Tg) C
D<(‘J’Q) for the full subcategory of complexes whose all perverse cohomology sheaves lie
in P (Tg).
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Let Tp be the stack over § with fibre Hom(A%U, Q). The conditions (5.2) imply that
Tp is a vector bundle over 8. For a point of § the exact sequence 0 = W @ U’ — A2U —
A%2U’ — 0 yields a sequence

(5.8) 0 — Hom(A?*U’, Q) — Hom(A?U, Q) — Hom(W @ U’, Q) — 0,

which is exact because of (5.2). Let VIp be the vector bundle over 8 classifyig a point of
§ and v; € Hom(A2U’, ), so

(5.9) 0—=VIp—-Tp—=T—=0

is an exact sequence of vector bundles on S.

Write evyg, : VIp — Al for the map sending (W, U’, (5.4), (5.1), v1) to the pairing of v
with (5.4). As above, one defines the category P (Tp) of (VTp, evpq, Ly—1)-equivariant
perverse sheaves on Jp, similarly for DV (Tp).

Lemma 5.2.1. 1) The push-forward of the exact sequence (5.9) by the morphism VIp —
Os given by pairing with the extension (5.4) is canonically isomorphic to the exact sequence
0—-0—=E—=T—0o0ns8 dual to (5.5).

2) The push-forward of the exact sequence (5.7) by the morphism VIg — Og given by
pairing with the extension (5.1) is canonically isomorphic to the exact sequence 0 — O —
E—T—0o0nSs.

Proof. 1) Dualizing (5.6) one gets the exact sequence 0 — H' (X, WoU’) - HY(X, W @ V') —
H' (X, W ®U"™) — 0 on 8. Part 1) follows from the fact that Bunpng is the stack classi-
fying U’, W as above and exact sequences 0 — A2U’ —=? - O = 0,0 = W —=? = V' =0

on X.

2) Dualizing (5.8) one gets the exact sequence 0 — H' (X, W ® U’) — H' (X, ?U) —
H'(X, A2U’) — 0 on 8. Part 2) follows from the fact that Bunpng is the stack classifying
U',W as above and exact sequences 0 - W - U - U’ = 0,0 = A2U =-? - O = 0 on
X. (|

As above, define P (&) as the category of perverse sheaves on & which are (0, Loy-1)-
equivariant, similarly for the derived category D" (€). Lemma 5.2.1 yields canonical
equivalences

DY (Tp) £ DY (€) <= D (Tg)

exact for the perverse t-structures.
The Fourier transform Fourg , : D™(&) = D™(€*) yields an equivalence between the
full subcategories on both sides

Fourg o, : D' (&) = D¥(°Bunpnq)

5.2.2. Let Tg be the stack classifying (W,U’) € *(Bun; x Bun,,_1), an exact sequence
(5.4) on X, and t € Hom(W,V’ ® Q). Here V' € Bung, , is given by (5.4). The

projection Tg — Y is smooth, we set

n—1

(j'Z,Q = ‘j'Q XyQ ZQ
Define the partial Fourier transform along Hom (W, U’ ® Q) as the following equivalence
FOUI“Q,w : D<(§Q) /—\; DW(TQ)

NoTATION. Write () for an exact sequence (5.4), () for an exact sequence (5.1).
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Consider the diagram
r.TQ IZE ViTQ X8 (IQ ai i@
J evyT,
Al
where ag sends t; € Hom(W, U’ @ Q), (W, U’ t,a,v) € Tg to (W,U’,a,t+1t1) € Tg. The
map pgq sends the same collection to (W, U’,t,a,7) € Tg. The map evysg, sends the same
collection to (t1,v). Then

* * B 1 im.rel(a
Fourg(K) = (p)i(apK ® v, Ly) @ (Qe[1)(3))" l(ae)

Let prg : Tg — T be the projection forgetting (7). Note that (pro)h : DY(To) — D(Tg)
is quasi-inverse to Fourg .

5.2.3. Let Tp be the stack classifying (W,U’) € °(Bun; x Bun,_1), an exact sequence
(5.1) on X, and v € Hom(A?U,Q). The projection Tp — Yp is smooth. Set TZp =

rIp XYyp Z.P.
Define the partial Fourier transform along Hom(A2U’, Q) as the following equivalence
FOUI‘p’d, : D<(‘j'p) = DW(‘IP)
Consider the diagram
(.Tp;?—P V‘:TP X8 (.Tp ﬂj){jdp

1 evvr,

Al
where ap sends v; € Hom(A2U’, ), (W,U’,v,a,7) € Tp to (W,U’,v +v1,7) € Tp. The
map pp sends the same collection to (W,U’,v,,v) € Tp. The map evyy, sends the
same collection to (v1, ). Then

Fourpy(K) = (pp)i(apK ® evyg, Ly) @ (@e[l](%))dim.rel(ap)

Let us reduce Proposition 5.1.1 to the following result, whose proof is found in Sec-
tion 5.4.

Proposition 5.2.4. There is a canonical isomorphism in D" (&)

(5.10) €Q FOuI“Q7¢ (IC(TZQ)) : €Ep FOuI'p,w (IC(‘TZP))

Proof of Proposition 5.1.1. It is formal to check that one has canonical isomorphisms
1

Foure y ep Fourp ., (IC(TZp)) = v pKpy ® (Qz[l](i)ylim.rel(qup)
and

Fourg  eq Fourg (IC(T2q)) = vp o Koy @ (QEU](%))dim-rel(w.Q)
Our assertion follows now from Propsition 5.2.4. 0

Remark 5.2.5. i) Let *"2Zg C Zg be the open substack given by the condition that
W — V' ®Q is a subbundle. We set

sm(ijQ = ‘j'Q leQ stQ

Since *™Zq is smooth,ism‘j“ZQ is also smooth. The conditions (5.2) imply that ST is
dense in TZq. So, IC(TZg) is the intermediate extension from *™JZg.
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Recall that Zp g C Zp denotes the open substack given by the condition that v : AU —
Q is surjective. We set “"TZp = Tp xy, Zpo. The conditions (5.2) imply that *"TZp is
dense in TZp. So, IC(TZp) is the intermediate extension from *"TZp.

The connected components of **TZp are given by fixing the degrees of W,U’. The
connected components of *™JZ¢ are also given by fixing the degrees of W,U’.

ii) The open substack of sm‘j'ZQ given by the condition that the composition W Lve
Q — U™ ® Q is a subbundle is dense in *™TZ.

Similarly, the open substack of *™JZp given by the condition that the composition
W @ U — A2U 5 Q is surjective is dense in ST Zp.
5.3. Let °T C 7 be the open substack classifying (W,U’,a,7) € S and s : W — U"* @ Q
whose image is a rank one subbundle in U™* ® Q. Let °T¢g (resp., °Tp) be the preimage
of °T under the projection Tg — T (resp., under Tp — 7).

Define a closed substack °X C °T by the following conditions. A point (W,U’, a,~, s)
of °T as above yields an exact sequence

(5.11) 0=U _,—=U 3WeQ—=0
It induces the surjections U* @ W — U 5 @ W and A2U’ — U!,_, @ W* ® Q of Ox-

modules. Then °X is given by the conditions
e the image of (y) under H' (X, U* @ W) — H'(X,U’* , ® W) vanishes,
e the image of (a) under H' (X, A2U’) — HY(X,U!,_, @ W* ® Q) vanishes.
Write °X¢, (resp., "X p) for the preimage of °X under °Tg — 9T (resp., under °Tp — 7).
Stratify °X by locally closed substacks °X; indexed by 7 > 0 and given by the condition
dim Hom(U,,_,, W) =i
Write °Xq.; (vesp., "X p;) for the preimage of °X; in °Xg (resp., in °Xp).

Lemma 5.3.1. The restriction of Fourg,,(ICs4,,) to 0T is the extension by zero under

Yo < °Tq of a perverse sheaf. This perverse sheaf is smooth along the stratification of
ODCQ by ODCQJ-, and its x-restriction to the stratum UDCQ%‘ is a shifted rank one local system.

Proof. A point of 8 gives rise to the diagram, where the top line is an exact sequence
0 — Hom(W,U' ® Q) —» Hom(W,V'® Q) 2 Hom(W @ U’,Q) — 0
)
Hom(W?2,0?)

For s € Hom(W ®U’, Q) the restriction of ¢ to the affine subspace 371(s) is affine, and the
underlying linear map Hom(W, U’ ® ) — Hom(W, W* @ Q2) is given by the composition
with 2s € Hom(U' @ Q, W* ® Q2).

Let (W,U’, 7, s) € °T be such that the corresponding fibre of the composition

aél (TZQ) 3 TJog— 7T

is non empty. Then there is ¢t : W — V' @ Q extending s : W — U™ ® Q such that the
image of ¢ is isotropic. The map s gives rise to the exact sequence (5.11). Write U] for
the orthogonal complement of U;,_, in V', so U],_, C U}, and U], € Bun,. Moreover,
U/ /U! _5 € Bung,, so one has a canonical decomposition

UL UL .S W eQ)e(We Q™)
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as a sum of isotropic subbundles. We get the diagram

! / / /
0— Un—2 - Un - Un n—2

(5.12) Nt 0
Wt

—0

where the vertical arrow is the inclusion as an isotropic subbundle. This shows that the
image of (a) under H' (X, A2U") — HY(X,U’_, @ W* ® Q) vanishes.

Now the fibre of aél(‘j'ZQ) 2 T over (W,U’, o, ,t) is the scheme of t; € Hom(W,U’'®
Q) such that the image of t +¢; : W — V' ® Q is isotropic. Using the exact sequence

02U, , oW QWU 2Q03W 22020,

one identifies this scheme with H’(X,U/,_, ® W*®@). For any such 1, the image of ¢ +;
is an isotropic subbundle in V' ® Q. So, one has to integrate over Hom(W, U},_, ® Q) the
restriction of £, under the composition

Hom (W, U!,_, ® Q) < Hom(W,U’ @ Q) 5 Al

This local system is trivial iff the image of v under HY(X, W @ U"™*) — HY(X, U , @ W)
vanishes.
Note that Hom(W,U!_, ® Q)* S H (X, U"* , ® W), and

XU, @W) =x(WeU™) —x(W?@ Q)

is fixed on each connected component of °T. So, the stratification of °X by 9X;, i > 0
coincides with the one given by fixing dim H*(X, U/, _, ® W* ® Q). O

The stack °T is smooth, its connected components are given by fixing the degrees of
w,U’.

Lemma 5.3.2. Consider a connected component € of T given by degU’ = ay, degW =
aw. Assume ay < 0 and aw sufficiently small compared to ay (it suffices to require
(n=3)aw <ay+(n—4)(g—1) and aw < g—2). Then the open substack of C given by
Hom(U/ _,, W) =0 is non empty.

Proof. Write B for the connected component of Bun; x Bun,,_; given by deg W = ay,deg U’ =
ay. Write P for the stack classifying U],_, € Bun,_2, W € Bun; with degU],_, =
ay + aw — (29 — 2), degW = aw, and an exact sequence (5.11) on X. The stack P is
smooth an irreducible.

For a point of P one has x(W ® U/* ,) < 0. So, the open substack P C P given by
Hom(U] _,, W) = 0 is non empty.

Let ¢B C B be the open substack given by H (X, W ® U’(z)) = 0 for any = € X.
Under our assumptions, for (W,U’) € B one has x(W @ U'(z)) < 0, so ¢‘B is nonempty.
The stack ¢B is contained in the image of the map £ : P — B sending the above point to
(W,U"). So, £ is dominant. Write ®B C B for the preimage of ®(Bun; x Bun,,_1) in B.
Assume °B non empty. Let °P = ¢71(°B). Since P is irreducible, °P N °P is non empty.
Our assertion follows. O

Lemma 5.3.3. The restriction of Fourp,(IC5y ) to 9T p is the extension by zero under

9Xp — YTp of a perverse sheaf. This perverse sheaf is smooth along the stratification of
X p by Of)vai, and its x-restriction to the stratum ODCPJ s a shifted rank one local system.
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Proof. Consider a point (W,U’,«a,~,s) € °T such that the fibre over this point of the
composition a;l(‘j'Zp) P Tp — T is non empty. Then there is v : A2U — Q extending
s: U @W — Q such that (U,v) € Zp. The map s gives rise to the exact sequence (5.11).

Note that (U,v) € Zpyg, that is, v : N2U — Q is surjective, because its restriction
to U’ ® W is already surjective. This point of Zpg gives rise to M € Bung, with an
exact sequence 0 — U,_y — U > M — 0 such that v = A?5. By our assumption, the
composition W - U - M —- M*® Q — U* ®  is a rank one subbundle, so W C M is
also a subbundle, and we get a diagram

0—- W —- M — W*Q —=0

T id Ts Ts
(5.13) 0—- W —- U - U’ —0
T T
Un—2 'I{L—Q

This diagram induces an isomorphism U, _» = U’ _,, so the image of (v) in H'(X,U’* , ®
W) vanishes. So, the fibre of a3 (TZp) 25 Tp over (W,U’,a,7,v) € °Tp identifies with
the scheme of sections U/ _, — U making the following diagram commutative

0O—-W-—- U —- U =0
N )

/
n—2

The group Hom(U],

n

_o, W) acts freely and transitively on this fibre. The local system
vy, Ly changes under this action by the character Hom(U},_,, W) C Hom(A*U’, Q) 5
A'. This character is trivial iff the image of a under H' (X, A2U’) — HY(X, W*@U!_,®Q)

vanishes. Clearly, over the locus of °Tp; one gets a shifted rank one local system. O

5.4. Proof of Proposition 5.2.4.

5.4.1. By Remark 5.2.5 ii), the perverse sheaf Fourg ,(IC(J2g)) is the intermediate
extension under °Ty < Tg, and Fourp,,(IC(TZp)) is the intermediate extension under
9Tp < Tp. So, it suffices to establish (5.10) over °€ = & x5 7.

First, let us define a full subcategory PW(‘I xgs °Bunpng) C P(T xs °Bunpng). Write
evy : TxgT*xg — Al for the natural pairing between T and T*. Recall that *Bunpng — 8
is a torsor under T*. As in Section 5.2, one defines the category PW(‘J' xs *Bunpng)
of (T*, evy)-equivariant perverse sheaves on T xg °*Bunpng. Similarly for the derived
category D" (T x5 *Bunpnq).

One has a canonical equivalence
(5.14) e: DY (&)= DW(T x5 °Bunpng)
exact for the perverse t-structures. It is characterised by the following. Write evg for the
composition

€ xs “Bunpng — € xg & — Al
where the second map is the natural pairing. Then (5.14) sends K to the complex K’
equipped with an isomorphism prj K ® evi Ly — (ge X id)*K’[l](%), where ge : € — T is
the natural surjection, and pr; : £ xg °*Bunpng — € is the projection. Such K’ is defined
up to a unique isomorphism.
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5.4.2. Let us define a morphism
evQ,i - ODCz- Xs <>BuIlpﬁQ — Al

Consider a point of °X; xs *Bunpng given by (U’, W, a,, s) € °X; and an exact sequence
(2.13) giving rise to V' € °Bunpng. Since the image of o in H'(X,U,_, ® W* @ Q)
vanishes, we amy pick a lifting of s to ¢ : W — V' ®Q such that the image of ¢ is isotropic.
Such ¢ is defined uniquely up to adding an element ¢; € Hom(W, U} _, ® ). The map
evg,; sends this point to the pairing of ¢ with (2.13). This is well-defined, because the
image of v in H*(X, U’ , ® W) vanishes.

Let us define a morphism

evp; - Oxi X8 <>BuIlme — Al

Consider a point of °X; xs *Bunpng given by (U’, W, a,, s) € °X; and an exact sequence
(2.9) giving rise to V € °Bunpng. Since the image of v in H'(X,U/* , ® W) vanishes,
we may pick a lifting v : A2U — Q of s such that (U,v) € Zpo. Such v is uniquely
defined up to adding an element v; € Hom(U},_,, W) C Hom(A2U’,Q) C Hom(A%U, Q).
Let evp; send this point to the pairing of v with (2.9). The result is well-defined, because
(v1,a) = 0. Note that evp; = evg,;.

5.4.3. The xrestriction of e Fourg 4 (IC(T2q)) to °X; xs °Bunpng identifies (up to
a shift and a twist) with evy, ;£y. The s-restriction of eep Fourp,y(IC(TZp)) to °X; xs
°Bunpng identifies (up to a shift and a twist) with ev},;Ly.

After applying e, it suffices to establish (5.10) over T x g °Bunpng. For each connected
component of °X there is ¢ such that °X; is dense in this component. This concludes the
proof of Proposition 5.2.4.

5.5. Pointwise Euler characteristics. Note that the maps vp : * Bunp — Buny and
vg : “Bung — Bung are surjective.

Proposition 5.5.1. There is a function Ex : Bung (k) — Z with the following properties.
1) For any k-point n € ° Bunp over V € Bung (k) one has

X(Kpy |y) = (=1)mrer) By (V)
2) For any k-point n € “Bung over V € Bung(k) one has
X(Kqup [y) = (=1)1mrelte) By (V)

Proof. For r > 1 consider the stack D, classifying collections: (W; C U; C V) € °*Bunpng
for 1 <4 < r, here W; € Bun;, U; € Bun,,, V € Buny, and inclusions W; C U;;; whose
image is a subbundle such that (W; C U;11 C V) € °*Bunpng for 1 <i <r.

Let f. : D, — Bunp Xpun, Bunp be the map sending the above point to (U; C
V,U, C V). The union of the images of f, for all » > 1 contains * Bunp Xpun, ¢ Bunp. If
(U C V,U’ C V) isin the image of some f, then, by Proposition 5.1.1, the pointwise Euler
characteristics of Kp at (U C V) and (U’ C V) coincide. Since vp : ° Bunp — Bungy is
surjective, part 1) follows.

Let g, : D, — Bung Xpun, Bung be the map sending a point of D, to (W7 C V, W, C
V). Using g, one similarly proves part 2). (]
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6. COMPARISON OF P AND R-MODELS

6.0.2. Keep notations of Section 2.3. Recall that Bung classifies V € Bungy and an
isotropic subbundle Uy C V with U; € Buny. Write V_o for the orthogonal complement
of Us in V, s0 V! =V_5/Us € Bung Let *™(Bung x Bung, ,) C Bung x Bung, , be
the open substack given by

HY(X, Q@ A%U,) =HY(X, Q@U@ V') =0
for (Uz, V') € Buny X Bungy, _,. Let *" Bung be the preimage of *™(Buny x Bung, _,)
in Bung. Recall the map vg : Bung — Bunpg from Section 2.3.10. The restriction

5™ Bung — Bunpg of vy is smooth. So, ¥ Bung — Bung is also smooth.
The map fr : Yr — Bung is a vector bundle over the open substack * Bung.

n—2"° n—2

6.0.3. Write R for the quotient of R by the center of the unipotent radical of R. The
stack Bung classifies V' € Bungy Us € Bun, and an exact sequence

n—27
(6.1) 02Uy =V o=V =0
Write Y for the stack classifying a point of Bunp as above and an exact sequence on X
(6.2) 0= AUy =? =00

Then Y 5 is a group stack over Bun g, it acts on Bung over Buny as follows. If an R-torsor &
on X is given by a collection (Uy C V') as above, the sheaf Ag of automorphisms of F acting
trivially on F x g R identifies canonically with A2U,. The action map Y R XBuny Bung —
Bung sends (¥, (6.2)) to F x4, F, where F is the Ag-torsor given by (6.2). In more
elementary terms, F x 4, F is given by the exact sequence 0 — V_g — V= Us; — 0,
which is the sum of 0 — V_o — V' — Us — 0 with the push-forward via Uy C V_5 of the
sequence 0 — Uy —7 — Uy — 0 given by (6.2).

Write ar : Yz XBuny 9r — YR for the action map defined similarly. This action on a
point (Us C V, v3) € Yg does not change vy : A2Us — Q.

As in Section 2.3.10, we denote by * Bung, Y'Yz and so on the preimage of

“(Bung x Bung, _,)

in the corresponding stack. The projection “Yz — “ Bunp is a vector bundle. One checks
that ¥ Bung — “ Bunp is a torsor under this vector bundle (for the above action).

Write evr : Yg XBuny IR — A for the map sending (Uz C V, vy, (6.2)) to the natural
pairing of vy with (6.2).

As in Section 5.2, one defines the category PV (Yz) of (Y, evi Ly )-equivariant perverse
sheaves on Yg. This is the category of perverse sheaves F' on Yr equipped with an
isomorphism

apF = pry F ® evp Ly
over Yz XBunp Yr whose restriction to the unit section is the identity, and satisfying the
corresponding associativity condition. Write D (Yg) € D¥(Yg) for the full subcategory
of complexes whose all perverse cohomology sheaves lie in PW(% R)-
The Fourier transform

(6.3) Fourg ;-1 : D¥(Bung) = DV (Yr)
is the following equivalence. Consider the diagram
Yo & Yr XBuny Y S Yr 1% Bung

\J,EWR
Al
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where pg is the projection. We set
EES * B 1 i o
Fourp -1 (K) = (pr)(@h fHK ® evipLy) © (Qil1](5))mrelnean)

It is exact for the perverse t-structures and the functor fp : D" (Yr) = D~ (Bung) is
quasi-inverse to Fourg ,-1.

One similarly defines the category DW(‘;R). Note that for any K € PW(‘;R) one has

(jr)is(K) € PV (YR) for the open immersion jr : Yz < Y.

6.0.4. The map er. Given a vector bunbdle M on X, a line bundle A on X and a
symplectic form A2M — A, we write H(M) = M @ A for the Heisenberg group scheme on
X with operation

1
(m1,a1)(ma,az) = (m1 + ma, a1 + as + §<m1,m2>)

(The line bundle A is usually clear from the context, and we omit it in our notation).

Given (Us, V') € Bung X Bung,, _,, the vector bundle U;® V" is equipped with a natural
symplectic form A%(Uy @ V') — A2U,, so one gets the corresponding Heisenberg group
HU; 2 V").

Now Bung, identifies canonically with the stack classifying (Us, V') € Bung x Bungy, ,
and a torsor on X under the group scheme H (U @ V).

Write Mod, for the stack classifying Us € Buns with an upper modification sy : Uy <
M, here M € Buns and ss is an inclusion of coherent O x-modules.

Consider the stack Mods X pun, Bung classifying (Us C V) € Bung and (s : Uy <
M) € Mods. Let us define a morphism

er : Moda XBun, Bungp — Bunpg

For a point of the source write V/ = V_5 /U, where V_5 is the orthogonal complement of
Uz in V. The map sy yields an inclusion of coherent O x-modules H(U>®V') C H(M V'),
which is a homomorphism of group schemes over X. View (U C V) € Bunpg as a triple
(Us, V', F), where F is a torsor on X under H(Us ® V). Let F be the torsor under
H(M ®V’') on X obtained from F by the extension of the structure group H(Uz; @ V') —
H(M ® V'). Then (M,V’,F) € Bung is given by some pair (M C V) € Bung. By
definition, eg sends (Uy C V,Uy C M) to (M C V).

Remark 6.0.5. Let (Uy C V,Us 3 M) € Mods XBun, Bung and (M C f/) be its image by
er. Let U C V be an isotropic subbundle of rank n such that U, C U. Define U’ by the
exact sequence 0 — Uy — U — U’ — 0. Let

(6.4) 0-M—->U—=U —0

be the push-forward of the latter exact sequence by sy : Us — M. The point (U C V) €
Bunp is given by an exact sequence (2.9). Let

(6.5) 0= AU 5?7500

be the push-forward of this exact sequence by A2U A2U. Then (6.5) together with
M C U is a point of Bunpng whose image in Bung identifies canonically with (M C V).
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6.0.6. Recall the stack X from Section 2.3.10. Let us define a morphism

pr : Xg — Bung,,_,
To do so, we introduce the following.
Definition 6.0.7. Given (U C V') € Bung, the vector bundle Uy ® V' is equipped with a
symplectic form A2(Uy ® V) — A2U,. Consider then M; = (Sym2 UQ)L/Sym2 U,, where
(Sym2 Us)* is the orthogonal complement of Sym? Uy in Uy ® V. So, M is equipped with

a symplectic form A2M; — A2U, and a line subbundle A2Uy C M;. We will refer to M;
with these structures as the symplectic-Heisenberg bundle associated to (Uy C V') € Bung.

Consider a point (Uy C V,Us A M ) € Xpg, here M is an upper modification of
Us € Buny equipped with det M = Q. Let (M C V) € Bung be the image of this point
under eg. By definition, pr sends the above point of X to the symplectic-Heisenberg
bundle (det M C M) associated to (M C V). Since we are given an isomorphism
det M =, this symplectic-Heisenberg bundle is a point of Bung,,_,. Moreover, by ([20],
Lemma 1), for the above point of X one has a canonical Z/2Z-graded isomorphism
(6.6) detRI'(X,M ® V)= det RT'(X,V")? ® det RT'(X, M)?"~* @ det R['(X, 0)3 "
We lift pr to a morphism (2.15) sending the above point of X to the collection (2 C
M;i,Bq), where
(6.7) By = det RT(X, V') ® det RI(X, M)"~? @ det RT'(X, 0)*~*"
and B? is identified with det RT'(X, M) via (6.6).

6.1. The stack Bunpngr classifies exact sequences

(6.8) 0—-U,—-U—=U =0

and (2.9) on X with U’ € Bun,_2,Us; € Buny. Write vpp : Bunpng — Bung and
vr,p : Bunpnr — Bunp for the natural maps.
We have a diagram

gR E xR BH;lGQn—4
(69) t t o

© TR Xid VP, R
YR XBuny Bunpar &= XR XBuny Bunpng — Bunp,, ,,

3

where the map vp R is defined as follows. Given a collection
(610) (U2 cUCV,sg:Uyg— M, detM:?Q) € Xgr XBung Bunpng

let (6.4) be the push-forward of 0 — Uy — U — U’ — 0 by s3 : Uy - M. Let
(M C V) € Bung be defined as in Section 6.0.6 and (2 C M;) be the symplectic-
Heisenberg bundle associated to (M C V). Then £ = (M ® U)/Sym? M is a lagrangian
subbundle in My, it fits in the exact sequence (2.3) with £ = M ® U’. One checks that
the element of Ext'(£,Q) = Ext'(U’, M) corresponding to (2.3) is given by (6.4). By
definition, vp r sends (6.10) to (2 € £ € M;) € Bung,, ,.

Lemma 6.1.1. The right square in (6.9) is canonically 2-commutative.

Proof. For a point (6.10) let B = detRI['(X, M ® U’) and let B; be defined by (6.7).
Recall that V' = V_5/Us,, where V_5 is the orthogonal complement of Us in V. We
must upgrade the natural isomorphisms B2 = det RI'(X, M ® V') = B? to a compatible
isomorphism B = B;.
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By (]21], Lemma 1), there is a canonical Z/2Z-graded isomorphism
B det R['(X, M)" 2 @ det RI'(X,U’)? @ det RT'(X, Q ® det U”)
det RI'(X,det U’) @ det RT'(X, 0)2n—4

Applying ([21], Lemma 1) to the exact sequence 0 — U’ — V' — U™ — 0, we get the
isomorphisms

det RU(X, V') = det RI(X, U’')@det RT(X, U™) = det RT'(X, U')@det RT'(X, U'@Q) =
det RT'(X,U’)? ® det RT'(X,Q @ det U’) @ det RT'(X,det U") ™!
They yield the desired isomorphism B = B. O

To prove Proposition 2.3.11, we establish an explicit formula for the restriction of (2.19)

under the projection pr; : Yg Xpun, Bunpnr — QR.
Recall the stack Sp from Section 2.3.1. The stack Bunpnpr Xpun,Sp classifies (Us C
U C V) € Bunpngr and a section s : U — M with M € Bung,. Let

Wpr C Bunpnr XBun,Sp

be the open substack given by the condition that the composition Uy < U = M is an
inclusion of coherent O x-modules (this composition is denoted s3).

Write Wr C Bunpng XBun, Yp for the open substack classifying (U C U C V) €
Bunpng and v : A2U — Q such that the composition A2Us < A2U -  is non zero (this
composition is denoted v3). Let mw : W — Wx be the morphism over Bunpnp given by
v = A%s. Write eV, Wpr — A! for the map sending the above point to the pairing of
v with the exact sequence (2.9) defining V. We get a diagram

W 7t Pw 4
WR - WR — yR XBung BunPﬂR
\I/ Pry
o
p

where pyy; sends a collection (Uy C U C V,v) € Wg to (Us C U C V, vy : A2Uy — Q), here

vy is the restriction of v to A2U;. We have denoted by pry : Wr — Yp the projection
sending the above point to (U, v).

Proposition 6.1.2. Over Yr XBun, Bunpnr the complex
1

(6.11) Dt () Ay @(Qu[1) () el im el or)
identifies with

o _ 1 .
(612) pW!(e’U%RLw X prg IC(ZP)) X (Qz[l](§))dlm.rel(pr9)

Proof. By Proposition 2.2.2, diagram (6.9) yields an isomorphism between (6.11) and

1 * ® 1 im.re
(mr X id)1wp g Kp,, 4,0 @ (Qé[l](i))d rel(ve, )

over Yr X Buny Bunpnr. By definition of Kp,, , 4, the latter complex identifies canonically
with

Py (M1 Qo) ® vy, Ly) @ (Qz[l](%))dimwﬁ,
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By Proposition 2.3.2, we have myi(Q¢[1](5))¥™ W5 = prj IC(2p) @ (Qe[1](4))dim-rellpry),
We are done. (|

As in Section 6.0.3, one defines the category PW(HR XBungy Bunpnr) of (Yg, eviLy)-
equivariant perverse sheaves on Y g Xgun, Bunpnr, and the corresponding derived category

D" (YR XBuny Bunpnr)

As for (6.3), one defines an equivalence exact for the perverse t-structures (denoted by
the same symbol by a slight abuse of notations)

FOUFR,¢—1 : D<(Bunme) — DW('%R XBung Bunme)

The functor (fg x id); : DW(ER XBuny Bunpngr) — D™ (Bunpng) is quasi-inverse to the
latter equivalence.

Proposition 6.1.3. 1) The complex (6.12) is canonically isomorphic to the restriction

of

_ 1 .
(6.13) Fourp -1 vp pKpy ® (Qe[ll(g))d‘m're“”’*’l’)
to the open substackngBunRBunan — YrXBunyBunpnr. Herevp p : Bunpnp — Bunp
is the natural map.
2) Over Yr XBunp *Bunpnp the complex (6.13) is perverse.

Proof. 1) This follows formally from the properties of Fourier transforms. Indeed, one
calculates the Fourier transform over the vector space Hom(A2U, Q) composed with the
backwords Fourier transform over H (X, A2Us).

2) The maps Bung et " Bungnp YR Bunp are smooth, and Fourg ,-1 preserves
perversity. (I

Proof of Proposition 2.3.11. Since pry : Yr XBunpg *Bunpnr — "Yr is smooth and surjec-
tive, our claim follows by combining Propositions 6.1.2 and 6.1.3. (|

The Levi of PN R identifies canonically with GLg X GL,_3. For A € m1(GLs x GL,,_2)
denote by Bunf‘)ﬁ r the corresponding connected component of Bunpnr. Write "Wf‘z for
the preimage of Bun?‘ng under Wr — Bunpng. Say that A € m(GLy X GL,,_2) is very
good if be‘% is not empty.

Denote by "W, the preimage of * Bunp.p in Wr.

Lemma 6.1.4. Let A € m1(GLa x GL,,_2) be very good.

i) The stack bW}]‘{ is wrreducible, and (6.13) is nonzero perverse irreducible over Yr Xpuny
bBunj;\ﬁ R

ii) The restriction of (6.13) to Yr XBuny ° Bunf‘;mR s a nonzero irreducible perverse sheaf.
Proof. i) Tt suffices to show that Wg X un,, Bunpp is irreducible. This is reduced to the
following claim. Consider the stack classifying diagrams

M
TN

0— Uy — U—=U —0,

where Uy — M is an inclusion of coherent sheaves, M € Bung,, Us € Buny, U’ € Bun,,_»
and (degUs,degU’) = X. This stack is irreducible.
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We have a surjective map mw : bW}\Q — Zp XQ bWQ\{, so the target of this map

P
is irreducible. The second claim follows now from the fact that the Fourier transform
preserves irreducibility and Proposition 6.1.2.

ii) By i) our sheaf is a restriction of an irreducible perverse sheaf to an open substack. So,
it suffices to show that (6.13) is nonzero over Yp Xpuny, * Bunpn .

Take a pair (Us, U’) € Buny x Bun,,_s with (deg Uz, deg U’) = X\. We may assume there
is an inlcusion vy : A2Us — Q. Take U = Uy @ U’ and the exact sequence 0 — A2U —
? = O = 0 on X trivial. Then the x-fibre of (6.12) at this point is nonzero. Indeed, this
is the cohomology of the scheme classifying an upper modification s, : Uy C M such that
A2?s9 = vy and a section U’ — M. This scheme is nonempty. O

Let ® Bun),; be the union L/% ° Bunff;ﬁ r, where X runs through the very good elements
of 7T1(GL2 X GLn_Q).

Corollary 6.1.5. Let A\ € 71(GLa x GL,,_3) be very good. Over *Bunp.p there exists
an isomorphism of nonzero irreducible perverse sheaves

* @ 1 im.rel(v —~ % A 1 im.rel(v
VR,pKPy @ (@4[1](5))(1 rARE) S KRy © (Qz[l](g))d rel(ve,r)

In addition, Kg is perverse irreducible nonzero over the image of the smooth map
bBunj;\ﬁR — Bung.

Proof. Combine Propositions 6.1.2, 6.1.3 and Lemma 6.1.4. O

7. THE PERVERSE SHEAF Xpg

7.1. Note that the results of Section 4 hold over a suitable finite subfield of k, in par-
ticular the perverse sheaves ,K¢, admit a Weyl structure for this finite subfield of k. In
Sections 7.1-7.3 we assume that the ground field is & = F,,.

Recall the stack , Bung, defined in Section 2.3.13. For a < min{2¢—2, 0} let ,,, , Bung,
be the stack classifying a line bundle L with deg(L* ® ) = a and an exact sequence
0—+L—M—L"®Q2— 0on X. The map 4, , Bung, = Bung, sending the above point
to M is a locally closed immersion. Moreover, if ¢ < min{2¢g — 2,0} then bga un,b Bung,

is a stratification of Bung, — , Bung,.
Write ,Uyg C Bungy for the open substack of V' € Bungy such that for any L € Bun,
with deg L < a one has Hom(V, L) = 0. The stack ,Uy is of finite type.

Lemma 7.1.1. For a < min{2g — 2,0} the %-restriction of Autg, g t0 yn,o Bung, x,Un
identifies with

Q¢[dimBung, g —2n(g — 1 — a)]

Proof. Apply Proposition 4.1.1 or ([19], Theorem 1). For a point (L C M, V) € 4y, Bung,
we get HY(X, V@ L* ® Q) = 0 and H'(X,M ® V) = H°(X,L ® V) is of dimension
2n(g—1—a). O

Lemma 7.1.1 immediately yields the following.

Corollary 7.1.2. If a < min{2g — 2,0} then the cone of the natural map K — 41K
over ;Ug is a constant complex. [

><a'uH
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7.2. For b € Z/2Z set ,U% = ,Uy N Buny. Note that if , Bun? is not empty then

a < (d/n)+g. So, one can not find a € Z such that Zi‘}) is not empty for all d € Z(e, P).
Let a be small enough so that the function Ex defined in Proposition 5.5.1 does not
vanish over ,U%; for each b € Z/27Z. Set Uy = Uy

Lemma 7.2.1. The set of d € Z(e, P) such that X% vanishes over Uy is at most finite.

Proof. Let d € Z(e, P), pick a’ such that 2,2.% is not empty. The irreducible subquotient
X4 of PH(, K) introduced in Definition 4.1.3 is characterised by the following property.
The perverse sheaf 5 (X% )[dim. rel(vp)] over ¢ Bun contains the irreducible subquotient
K},

If K¢, vanishes over Uy then K j'f,)d) would vanish over u;l(u m)Ne Bun%. In particular,

E5 would vanish over Ug N vp(¢Bun).

Let J C Z(e, P) be the set of those d for which 3{?{ vanishes over Ug. If J is infinite
then the union of Uy ﬂyp("‘Bunjé), d € J equals Uy, and E5 would vanish over Ug. This
contradiction shows that J is finite. (I

Using Lemma 7.2.1, we replace if necessary a by a smaller integer and assume from
now on that for all d € Z(e, P) the perverse sheaf X% does not vanish over Uz. We also
assume a < min{2g — 2,0}. Set Ky = PH (LK) i, -

Lemma 7.2.2. For each d € Z(e, P) the perverse sheaf X% already appears as an ir-

reducible subquotient in 5~<u. More precisely, let o’ < a be such that Z,Z?D is mot empty.
Then there is a unique irreducible subquotient IK%L in Ky such that

o :PH(,K) — PHO( K)
induces an isomorphism Kﬁ’—Ta/fK‘Ii{. The subquotient fK‘é of Ko is characterised by the
property that
vp(K¢)[dim. rel(vp)]
over ¢ Bunp Nvpt (Ug) contains K%’w as an irreducible subquotient.
Proof. By Corollary 7.1.2, the kernel and cokernel of a : PH%(,K) — PH%(, K) over Uy

are perverse sheaves, which are succesive extensions of constant perverse sheaves. Since
K4, is not constant and does not vanish over Uy, our assertion follows. O

7.2.3. Let F be an irreducible subquotient in Ky. Let Ir C Z(e, P) be the set of
d € Z(e, P) such that F does not vanish over Uy N vp(“Bun®). The set I is infinite.
Write F' for the intermediate extension of F' under Uy < Buny.

Let v, : Bunp — Bun,, be the map sending (2.9) to U. The morphism v, is smooth.

Lemma 7.2.4. For each d € Z(e, P) the perverse sheaf
- * (T B 1 im.rel(v
Foury} , vh(F) ® (Qe[1)(3)) "™ e!r)

over Y%, either vanishes or identifies with 1C(Zp). In the first case there is a perverse
sheaf F¢ € P(°Bun?) and an isomorphism

(7.1) y;‘)(F) ® (@Z[l](%))dim.rel(up) ’_\;V;istd ® (@Z[l](%))dim.rel(yn)

over © Bundp, In the second case F = K¢ .



GEOMETRIZING MINIMAL REPRESENTATIONS 39

Proof. We may assume F' non constant. Let ¢’ < a and S = PH%(,» K). By Corollary 7.1.2,
the image of F' under (4.5) is a nonzero irreducible subquotient in S. By Corollary 4.1.2,

- * ® 1 im.rel(vp) —<
Foury} , vj(S) @ (Qe[1)(5)"™ ") = 1C(2p)
over 2,1;}‘},. Since the union of ;,Q;é for all ' < a equals ‘3932, we are done. O

In Appendix A we introduce a notion of an almost constant local system on Bung.
Note that if E is an irreducible almost constant local system on Bunl}{ for some b € Z /27
then F is of rank one and order at most two. The following will be proved in Section 7.2.8.

Proposition 7.2.5. The irreducible subquotients inL of K over U8, all coincide for d
mod 2 = b. The resulting irreducible subquotient is denoted Ky . If F' is a different

wrreducible subquotient of Ky over U8, then F @y k is a direct sum of (shifted) almost
constant local systems on Bun’;.

Definition 7.2.6. The perverse sheaf Xy € P(Bung) is defined as the the intermediate
extension of Ky o @ Ky,1 under Uy — Bung. The perverse sheaf Xy is irreducible over
each connected component of Bung.

Proposition 7.2.5 immediately implies the following.

Corollary 7.2.7. For each d € Z(e, P) the perverse sheaf vi(Kp) ® (Qg[1](3))dim-rel(vr)
over eBunﬁlD contains Kj‘é,w as an irreducible subquotient. More precisely, for each d €
Z(e, P) there is an isomorphism

— * B 1 im.rel(vp) —~<
Foury ), vp(Km) ® (Qe[1)(3)) ™17 = 10(2p)

over e‘;%.
7.2.8. The fact that k is finite will be used in the proof of the following key lemma.

Lemma 7.2.9. Let F be an irreducible perverse sheaf on Bunl}{ for someb € Z/27. Let I
be an infinite bounded from above set of integers. Assume given for each d € I a perverse
sheaf ¢ € P(°Bun?) and an isomorphism (7.1) over © Bunb. Assume that if d € I then
v (F) is nonzero over ¢ Bun'p. Then each irreducible subquotient of F @y k is a (shifted)
almost constant local system on Bunll’q,

Remark 7.2.10. We do not require in Lemma 7.2.9 that ¢ are irreducible. We can not
garantee this, as we don’t know if the geometric fibres of vp : eBunﬁlD — Bunpg are
connected (for generic fibres cf. Proposition 7.4.1).

Proof of Proposition 7.2.5. The perverse sheaf K |uz;1 admits at least one irreducible
subquotient which is not an almost constant (shifted) local system. Let F' be such an
irreducible subquotient. Then by Lemma 7.2.9, the set A = {d € I | F # K¢} is finite.
Let F’ be an irreducible subquotient of Ky |U¥1 not equal to F. Then for any d € Ip — A
we get F' # K¢ . So, by Lemmas 7.2.9 and 7.2.4, each irreducible subquotient of F’ ®y, k
is a (shifted) almost constant local system on Buni’q ®yk. This implies that F’ # K¢ for
all d € Z(e, P). Thus, F = K¢ for all d € Z(e, P). O
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7.3. Proof of Lemma 7.2.9. For dy,ds € Z of the same parity write
x4z Bunil,1 X Bungy Bundp2

for the open substack given by the property that the two P-structures on V' € Bung are
transversal at the generic point of X. So, X%+ classifies two exact sequences 0 — A2U; —
? = Ox giving rise to 0 = U; = V — U} — 0 such that the composition Uy =V — U3
is an inclusion of coherent O x-modules, and the isomorphisms

det V= (detU;) @ det U = O
coincide for 7 = 1, 2.

For a point of X9 we get a diagram U; @ Uy C V C Ui @ U;f. The projections
V/(Uy @ Us) — Us/Up and V/(Uy @ Us) — Us/Us are isomorphisms, so there is an
isomorphism
of torsion sheaves on X such that V/(Uy & Us) = {(v,¢(v)) € (U{/Uz) & (Us/Ur) | v €
Us/Us}. Moreover, ¢ is anti-symmetric in the sense that for any v1,ve € Uf/Us one has

(7.2) (v1,(v2)) + (p(v1),v2) € Ox
Here (-, -) is the natural pairing.
Remark 7.3.1. Write O, for the completed local ring of X at z € X, let t, € O, be a
uniformizer. Assume that a1 > ... > a,, > 0 and
GO0/t D .. DOt - 1,10,/0, D ... Dt ™0, /0,

is a O x-linear map given by a matrix b = (b;;). Then (7.2) holds iff b;; € t, min{enastg /o,
and for all 4, j one has b;; + b;; = 0. Since the characteristic of k is not 2, this implies in
particular b; = 0.

Let Xdi-d2 ¢ 50di:d2 be the open substack given by the property that there is an effective
reduced divisor D > 0 on X such that div(U;/Us) = 2D. For a point of Xdi:d2 there
is an isomorphism U5 /Us = Op @ Op. Here Op is the structure sheaf of D. We have a
diagram of smooth projections

Buni1 & oydid> B Bunff,
where ¢; sends the above point to U;.

Write ¢Xd1:d2 ¢ X142 for the preimage of © Bunz1 x € Buni2 under ¢; X go. Consider

the diagram of projections

cBundt & exhdz % Bypd
By our assumptions, for di,dy € I there are isomorphisms o : ¢qiF =5 g5 F% of shifted
perverse sheaves over exdidz
Write ¢ for the intermediate extension of ¢ under ¢ Bun? < Bun?. The stack X2

is irreducible. So, if © Bunzi is not empty for i = 1,2 then exdi:dz ig dense in X% . Thus,
the isomorphisms o extend (by the intermediate extension) to isomorphisms

G Fh S e
of shifted perverse sheaves over X%1+42. For U, € Bun?z (k) write

X% (Up) = X% x4y Speck,

where we used the map U, : Speck — Buni2 to define the fibred product.
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Given dy and U; € BunZl, there is do € I sufficiently small and Uy € Bunff(k) such
that the projection ¢ : Xdade (Us) — Bun‘i1 is smooth over a Zariski open neighbourhood
of U;. Now the isomorphism & shows that Fh is smooth in a neighbourhood of Uj.
Since U; was arbitrary, F¢ is a shifted local system on Bun‘i. The union of the images of
vp : ©Bunf — Bun}; equals Bun;, so F is also a shifted local system over Bun.

Now Conjecture A.1.2 would imply that F is an almost constant local system. Conjec-
ture A.1.2 not being known, we give another argument that applies for the finite ground
field k. _

For k-points U; € Bun’f;i with d; € I say that U; < Us if there is a k-point € X142
such that g;(n) = U; for i = 1,2. Write ~ for the equivalence relation generated by <. If
two k-points Uy, Us € Bunfl are equivalent in this sense then for the maps x; : Speck Y%
Bun? the isomorphisms & yield i F? = x5 F.

Lemma 7.3.2. Assume n > 3. Let d € I and U; € Bun® (k) for i = 1,2. Then Uy ~ U,
if and only if there is & € Bun®(k) with €2 = (det U;) ® (det Up) 1.

Let d € I and L; € Bunf(k). Let BunfiL1 be the stack classifying U; € Bun?, & € Bun!
and an isomorphism det Uy = €2 ® L;.

By Lemma 7.3.2, the *-restrictions of F¢ to all k-points of Bunfh 1, are isomorphic to
each other. In particular, the function trace of Frobenius tr(F¢, k) : Bun‘i’Ll(k) — Q
is constant. Since the same hold for any finite extension of k, we conclude by ([17],
Theorem 1.1.2) that F¢ is the inverse image of a local system on Spec k.

Let GSpin,,, be the quotient of G, x Spin,, be the diagonally embedded subgroup
A=1Z/2Z, here H= Spin,,, /A. In terms of Appendix A, we have taken T' = G,, and
Ty = G,,/JA=G,,. Pick b € 71(GSpiny,,) over b € m(H), let ¢ € m;(T}) be the image
of b. Pick a Ti-torsor Fr, in Bunf, (k). We get the stack Bunl(};spin%,srﬁ defined as in
Appendix A and the morphism

. b b
f . BunGSpinzn’r}Tl — BunH

Let P C GSpin,, be the preimage of P under the natural map GSpin,,, — H.
Set Bunp’rle = Bunp X Bunr, Spec k, where we used the map Fr, : Speck — Bunp, to
define the fibred product. There is a commutative diagram for a suitable d € 71 (P)

d d Vp b
Bun, ,, < BunP’&rT1 = BunGSpm%/JT1
1 L e Ly
Bunz & Bun% = Bunl}I
Let © BungffT1 be the preimage of ¢ Bunﬁlg under fp. We see that u;gf*F is the inverse
image of a local system on Spec k. By Proposition B.1.1 in Appendix B, for d € I small
enoughﬁthe generic fibre of vp : ¢ Bun‘fE,JT1 — Bunlégpin2n3T1 is geometrically irreducible.
So, f*F is the inverse image of some local system over Spec k. Lemma 7.2.9 is reduced to
Lemma 7.3.2. O

Recall the following notion. Let A be a coweight of GL,, and F, the field of fractions
of Oy, z € X. If L, L’ are two free O -modules of rank n with an isomorphism of generic
fibres 8 : L ®o, F = L' ®o, Fy, we say that L is in the position A with respect to L’ if
there is a trivialization o : L’ = O such that the image of L < L ® F, ALeF, 5 E!
equals £)O".
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Proof of Lemma 7.3.2. Assume that &2 = (det U;) ® (det Us)~!. We must prove that
Uy ~ Us.

First, we may assume det U; = det Us. Indeed, by Bertini theorems ([24]), there are
reduced effective divisors DT, D~ on X defined over k such that for D = DY — D~ one
has €= O(D). Pick any Uy C U* and Us C U* such that U*/Us = Op+ & Op+ and
U*/Us=0p- ® Op-. We may assume DV, D~ sufficiently large so that (degU) € I.
Then Uy ~ Uz and det U; — det Us. We are reduced to the case det U; — det Us.

Pick € X and an isomorphism v : U; = Uz |x—,. One can find a sequence of k-points
Us,...,U, € Bun‘fl and isomorphisms y; : U; 5 U1 |x—p fori =2,...,r—1with U, = U
such that U, is in the position (1,0,...,0,—1) with respect to U; at x.

We are reduced to the case of an isomorphism ~ : U3 = Uy |x_, such that Us is in
the position (1,0,...,0,—1) with respect to U; at x. This means that there is a base

{e1,...,e,} of Uy in a neighbourhood of x such that {t,e1,ea,...,e,_1,t; ey} is a base
of Us in a neighbourhood of x. Here t, € O, is a uniformizer. Let U’ € Bun,, be the mod-
ification of U; whose local base in a neighbourhood of x is {e1,...,en_2,t; ten_1,t; ' en}.

If —d —2 € I then U; ~ U™ ~ U,. Otherwise, replace U’ by a bigger suitable upper
modification U” at some points different from z such that U; ~ U"* ~ Us;. We are
done. (I

Remark 7.3.3. Let ¢ # 0, let F' be an irreducible subquotient of pHi(af() [, - Write F' for
the intermediate extension of F' under Uy < Bung. Then each irreducible subquotient
of F @, k is an almost constant local system.

Indeed, if F' is not constant then, as in Lemma 7.2.2, we see that F appears as an
irreducible subquotient of PH(,/ K) |y(,, for all @’ < a. This together with Corollary 4.1.2
implies that Fourg;’w V}SF vanishes over the stack ¢Yp. Our claim follows now from

Lemma 7.2.9. Thus, the whole complex oK [11;; is built up from X g and almost constant
local systems.

7.4. Assume k algebraically closed. Our purpose now is to establish more properties of
the sheaf Xg. From Proposition B.1.1 of Appendix B one easily derives the following.

Proposition 7.4.1. There is Ng € Z such that for all d < Ny the generic fibre of
vp:°© Bundp — Bun‘}{ mod 24 geometrically irreducible and non empty. OJ

Proof of Theorem 2.3.3. By Corollary 7.2.7, for each d € Z(e, P) there exists a semi-
simple perverse sheaf M¢ on ¢ Buni and an isomorphism over € BunfD

(7.3) <1/1*3(1KH) ® (Qe[l](;))dim.rel(up)) 8¢ 3Kj'§71/, © (y;Md ® (Qé[l](%))dim.rel(un))

Here the upper index ss stands for the semisimplification of the corresponding perverse
sheaf. Now Proposition 5.5.1 shows that there exists a function Ey : Bung (k) — Z such
that for each d € Z(e, P) and 7 € ¢ Bun’h(k) over V € Buny (k) one has

im.rel(v? im.rel(v%
X(Md |Vn(77)> — (_1)d el(vy,)+d el( P)EM<V>

Assume that Ey is not identically zero on Bun}; for some b € Z/2Z. Pick dy € Z(e, P)
with dy mod 2 = b and U € ¢ Bun? such that y(M% |y,) # 0. Argue as in the proof
of Lemma 7.2.9. Given d; € Z(e, P) with d; mod 2 = b, consider the stack X492 (Uy)
introduced in Section 7.3. Let ¢X%1:42 (Uy) be the preimage of ¢X%+4> in dr-d (Uy). If
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dy is sufficiently small, the projection g, : ¢X%42(Uy) — ©Bun? is dominant, so that
XM |ir) = x(M® |1;,) for Uy lying in some nonempty open substack of © Bun®. Since
¢ Bundp1 — Bunl}J is dominant, we conclude that Fy¢ does not vanish over some nonempty
open substack of BunZ}{. This implies that Xy does not vanish at the generic point of
Bun%;. Then applying ([8], Lemma 4.8) together with Proposition 7.4.1, we learn that
V(X p)[dim. rel(vp)] is an irreducible perverse sheaf on ¢ Bun}', so M% must vanish.
This contradiction shows that Fy, is identically zero.

Since M? is a perverse sheaf, this in turn implies that M?¢ = 0 for all d € Z(e, P). So, for
each d € Z(e, P) the perverse sheaf v% (X )[dim. rel(vp)] is irreducible over ¢ Bunp. [

7.5. Proof of Theorem 2.3.5.
Step 1. Set G = G, for brevity. Let ,E = Q[dim Bung] over , Bung. Recall that
JK = Fy(,F), where

Fy : D™ (Bung); — D™ (Bung)
is given by ([20], Definition 2). Recall that for ¢ < min{2¢ — 2,0} we have the locally
closed substack o Bung C Bung introduced in Section 7.1. Set o R = Q;[dim Bung] over
un,o Bung. Write W for the standard representation of H. Let W, denote the standard
representation of G = SQ5 and Wy = @I'-2  Q[2i]. By ([20], Theorem 3), one has

i=2—n
(7.4)  Hig (W, oK)= Fy(HG (Wo ® Wi, oE)) = Fu(HG (W1, 0E)) & (W @ oK)
Recall that , Bung C 41 Bung. If a + 1 < min{2g — 2,0} then ,_; Bung admits the
stratification
a—1Bung = a+1 Bung U un,a Bung U un,a+1 BuIlG7
and the substack ., , Bung is closed in ,_; Bung. Set Wy = (Q¢[—2] & Q, ® Q¢[2]). The

following Lemma is straightforward.

Lemma 7.5.1. Let a +1 < min{2g — 2,0}. The complex ,Hg (W1, E) is the extension
by zero from ,_1 Bung.
1) The x-restriction of ;Hg (W1, 4F) to 411 Bung identifies with

Wl ® (a+1E)7
where Wy = (Q¢[—2] ® Q¢ @ Q¢[2])-
2) The *-restriction of ;HG (W1, oE) t0 yn,qo Bung is (R[—2].
3) The x-restriction of ng(Wl, oF) t0 unat1 Bung fits into an exact triangle
oR[=2] = HG (W1, ,E) — R
O

It suffices to prove that there is a complex L € D(Buny ), which is a finite direct sum
of shifted almost constant local systems on Bung, and an isomorphism in D(Bung)

(7.5) Hy (W, Xy) = (Wi + Wo) @Ky + L

Let b be any integer small enough, so that Ky |,1,7# 0. We will show that there is such
L (depending eventually on b) and an isomorphism (7.5) over ,Uy. Since b is arbitrary,
L is independent of b, and this would conclude the proof.

Step 2. Write D; C D(Up) for the full triangulated subcategory generated by objects
of D(,Ug) which are restrictions from Bung of the almost constant local systems.
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Let « be the highest weight of W. For ¥ € D(Bung) the complex ,Hjy; (W, F) |,u,, is
completely determined by F |,_ v, . Indeed, if V.V’ € Bungy and V=V’ |x_, such that
V is in the position a with respect to V'’ then V' € ,Uy implies V' € ,_1Uy.

Pick N > 0 such that for any perverse sheaf A on Buny the complex ,Hj; (W, A) over
Buny is placed in perverse degrees [-N, N| (actually, one may take N = dim Gr%;).

Pick a small enough compared to b and satisfying the assumption of Lemma 7.5.1. Then
for a’ < a the cone of the natural map af( — a/f( over ,_1Upg is a succesive extension of
constant complexes.

By Lemmas 7.5.1 and 7.1.1, Fy(.H (W1,.F)) over ,Uy has a finite filtration in the
derived category, one of the graded pieces is Wi ® (a+1f( ), and the others are constant
complexes.

Write .>» for the truncation functor with respect to the perverse t-structure. Apply
r>—n for the isomorphism (7.4) over ,Up.

From Proposition A.1.3 we conclude that ,>_n(;Hyy (W, a[?)) over Uy admits a finite
filtration in the derived category, one of whose graded pieces is ,Hi; (W, Ky ), and all the
others are shifted almost constant local systems. Similarly,

>N (FH(mHg(Wla oE))® (Wo® af{))

over Uy admits a finite filtration in the derived category, one of whose graded pieces
is (W1 + Wp) ® Ky and all the others are shifted almost constant local systems. This
implies already that (W +Wy) ®XK y appears as a direct summand in ,Hf; (W, Xy ). More
precisely, by decomposition theorem ([2]), there is a complex L € D(Bung), which is a
direct sum of shifted irreducible perverse sheaves, and an isomorphism in D(Bung)

HE W, Kpg) = (Wi + Wo) @ Ky @ L

We also see from the above that ,Hi; (W, Kpg) = (Wi + W) @ Ky is the quotient category
of D(4Ug) by D1. So, L € D;. Since D; is closed under taking the direct summands, we
conclude that each irreducible perverse sheaf appearing in L lies in D1, hence extends to
Bung as an almost constant local system. Theorem 2.3.5 is proved.

8. THE PERVERSE SHEAF Xy VIA EISENSTEIN SERIES

8.1. Recall the map v : Bung — Bung defined in Section 2.3.7. Write Bung for the
stack classifying V' € Bunyg with an isotropic subsheaf L C V| where L € Bun;. Let
vg : mQ — Bung be the projection sending this point to V. Write %g C mQ for
the substack given by deg L = m. The restriction gy : Bungy — Bungy of Ug is proper.
Set
8™ = (74)1Q¢[dim Bungy]

This complex differs from the usual definition of geometric Eisenstein series ([7]), as we
used the constant sheaf instead of IC(Bung) on the non smooth stack Bung.

In this section we propose one more conjectural construction of the perverse sheaf Ky
as a ‘residue’ of the sequence 8™ as m goes to minus infinity. Set

_ _ 1 .
§™ = Foury |, (vp8™) @ (Qi[1](5)) ™) € D(Yp)

Recall that G; introduced in Section 2.2 is the group scheme of automorphisms of
My = Ox @ Q acting trivially on det My. Let By C G be the Borel subgroup preserving
Ox. Write Bunj, for the connected component of Bunp, classifying exact sequences

(8.1) 0-Q®L—>M-—=L"—0
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with L € Buni". Let vp, : Bunjz, — Bung, be the map sending (8.1) to M. Recall that
Zp,o is the stack classifying (U, M, s), where U € Bun,,, M € Bung, and s : U — M is a
surjection.

Lemma 8.1.1. 1) For each m € Z the complex 8™ is the extension by zero under the
closed immersion Zp — Yp.
2) The restriction of 8™ to the open substack Zjl%o C Zp identifies canonically with

(id xvp, )I(@e[l](%))—Q(d-&-'rn)-&-n?(g—l)

for the map id xvp, : Zpo XBung, Bung, — Zpo. The stack 2%70 X Bung, Bunf, is smooth
of dimension —2(d +m) +n?(g — 1).

Our proof of Lemma 8.1.1 uses a general construction presented separately in Section 8.2
for the convenience of the reader.

8.2. A stack associated to a complex. Consider a complex M = (A 4B C) of
locally free O x-modules of finite ranks placed in cohomological degrees 0,1,2. The maps
in this complex are morphisms of coherent sheaves (not necessarily morphisms of vector
bundles).

Let Xy be the stack classifying an A-torsor ¥4 on X, s € H*(X, By, ) whose image
in H°(X, C) vanishes. Here a € A acts on B sending b € B to b+ d(a), and Bg, is the
quotient of B x F4 by A acting diagonally.

Lemma 8.2.1. Xy is naturally isomorphic to the stack quotient of Hl(X, M) by the
trivial action of H*(X,M).

Proof. Let B’ be the kernel of B — C and M' = (A A B’) placed in degrees 0,1. Then
Xt = X naturally. Since H* (X, M) = H (X, M’) for ¢ < 1, we may and do assume
C=0.

The category of A-torsors on X is equivalent to the category of exact sequences 0 —
A— FE — Ox — 0on X, the datum of s then becomes a datum of o : E — B such that
the composition A — E 5 B equals d. Thus, Xy is the stack classifying diagrams on X

0= B 4 B 5 0 =0

te a1

0—- A —- E —= 0Ox —0
So, a point of Xy gives rise to a distinguished triangle M — 8§ — Ox on X, where
8 is the complex (E % B’) placed in degrees 0,1. This triangle yields a morphism
H°(X,0x) — H'(X, M), hence a morphism of stacks v : Xp¢ — H'(X,M). The group
H%(X, M) acts on Xy naturally by 2-automorphisms, so v extends to a morphism Xy; —
H'(X,M)/H’(X,M). One checks that this is an isomorphism. O

Example 1. Assume that C = 0 and d : A — B is generically surjective. Then
HQ(X, M) = 0, and Xy is the stack classifying an exact sequence 0 - A —=? — Ox — 0
on X together with a splitting of its push-forward via d : A — B.

Example 2. Let U be a rank n vector bundle on X and ¢ : L < U* be a subsheaf.

Define the complex M = (A2U & Hom(L,U) & Hom(Sym? L, Ox)) as follows. The map

do sends y : U* — U such that y* = —y to the composition L LU 5 U. The map dy
sends z : L — U to (z,t) + (t, z). More precisely, here (z,t) + (¢, z) sends a local section
wiwy € Sym? L (with w; € L) to (z(wy), t(ws)) 4 (t(w1), 2(w2)) € Ox. The category of
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A2U-torsors on X is naturally equivalent to the category of exact sequences (2.9) on X.
Write V for the image of (2.9) under vp, it is included into an exact sequence (8.2). Then
By, is the sheaf of liftings £ : L — V of the morphism ¢ : L — U*. The condition that
the image of £ in H°(X, Sym? L*) vanishes means that the image of £ is isotropic.
Thus, Xy« is the stack classifying an exact sequence (2.9) on X, and for the correspond-
ing V € Bung a commutative diagram
0—-U—- V —= U =0
NiE Tt
L

9

where the image of t is isotropic. Write Uy for the kernel of ¢* : U — L*. If L is of rank
one then the kernel of dy equals Hom/(L,Uy).

8.3. Proof of Lemma 8.1.1. 1) The stack Bunp Xpuny Bung classifies an exact se-
quence (2.9) on X giving rise to an exact sequence

(8.2) 0-U—-V-=>U"=0

on X with V' € Bung, and an isotropic subsheaf L C V with L € Buny*. Denote by
X1 C Bunp XBung Biung the closed substack given by the condition that L. C U, write
Xo for the complement of Xy in Bunp Xpun, EQ. Write P,, for the stack classifying
U € Bun,, with a subsheaf ¢ : L < U*, where L € Bunj".

Clearly, the contribution of X; to the the complex 8™ is the extension by zero under
the zero section Bun,, — Yp. Consider the diagram

1 ev id xq1 q
A" <~ Yp XBun, Bunp < Yp XBun, Xo = Yp,

where ev is the natural pairing between v : A2U — € and the exact sequence (2.9), here
(U,v) € Yp. We have denoted by ¢; : X9 — Bunp and ¢ the projections. We will show
that

¢((id xq1)* ev™ L)
is the extension by zero from Zp. Let fp : X9 — P, be the map sending a collection (2.9)
and L C V to the composition L — V — U*. Then ¢ is the composition

id X fp pr
YpP XBun, Xo — YpP XBun, Pn = Yp

Consider a k-point n of P,, given by ¢ : L — U*. Write U; for the kernel of t* : U — L*.
As in (Section 8.2, example 2), we get a complex M = (A2U 4L I'® U1) placed in
degrees 0,1. The fibre Xyt of fp over 7 identifies with the stack quotient of H' (X, M) by
H (X, M).
Since d is generically surjective, H2(X , M) = 0. The distinguished triangle M —
AN2U — L* ® Uy on X yields an exact sequence
HY(X, M) - H' (X, \*U) - H(X,L* @ U;) = 0

Thus, integrating (id xq1)*ev* Ly over Xy, one gets zero unless v € H' (X, L* ® U;)*.
So, the restriction of v : U — U* ®  to U; must factor through L ® €2, in particular
v:U — U*®Qis of generic rank at most 2. So,

(83) (ld Xf?)!(id qu)*e’l}*Lw
is the extension by zero under Zp Xpun, Pn < Yp XBun, Pn. Part 1) follows.

2) Let P, C P, be the open substack given by the property that v : L < U* is a
subbundle. Let us show that the restriction of (8.3) to the open substack Zp g Xpun, Pn is
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the extension by zero under Zpy XBun,, 0P, — Z P,0 XBun, Pn- Indeed, consider a k-point
of Zpo XBun, Pr given by s : U — M and t : L — U*. Assume that the *-fibre of (8.3)
at this point does not vanish. Let U; be the kernel of ¢* : U — L*. We have seen in 1)
that v € H(X,Q®U; ® L). Let D be an effective divisor on X such that ¢ : L(D) < U*
is a subbundle. Then v writes as a composition

AU U, @ L*(-D) = U, @ L* = Q
Since v : A2U — € is surjective, D = 0.

Write Us for the kernel of s : U — M. Since v vanishes on A2U;, we also get Us C Ui,
and the exact sequence 0 — Uy /Uy — M — L* — 0 is a point of Bun . We have a
closed immersion

iO : Z'P,O ><Bun(;1 Bungl — Z'P,O X Bun,, O(Pn
given by the condition that ¢t : L < U* factors through s* : M* — U*. We conclude that
the x-restriction of (8.3) to Zp XBun, *P» identifies with (i9)1Q, up to a shift and a twist.

To calculate the shift note that Bungy is smooth of dimension

m(2 —2n) 4+ (2n* — 3n +2)(g — 1)

and dim Bung = (2n2 — n)(g — 1). Further, dim Bun} = (1 — n)d + 3"277”(9 —1). For a
point of 9P, as above, M= A2 Uy, so
(n—1)(n—-2)

dim X = —x(*U) = (2 = n)(d + m) +

(g - 1))
where d = degU. Lemma 8.1.1 follows.

8.4. Note that Zﬁl;,o is smooth of dimension (n? +3)(g — 1) — 2d, and Bun, is smooth of
dimension —2m.

Lemma 8.4.1. 1) For g =0 (resp. for g > 1) assume that m <1 (resp., m <2 —2g).
Then

(8.4) v, - Bung, — Bung,

is generically smooth. If g = 0 then the generic fibre of (8.4) is irreducible.
2) If g > 1 and m < 3 — 3g then the generic fibre of (8.4) is irreducible.

Proof. 1) is elementary. 2) Recall the stack , Bung, introduced in Section 2.3.13. Un-
der our assumption the stack ,,144—4 Bung, is nonempty. Indeed, this follows from the
semistability of generic M € Bung,. Let v : X — ;,444—4 Bung, be the stack classifying
a point M € ,,449-4Bung,, L € Bun" and a section s : L ® @ — M. The projection
X — 144g-4 Bung, x Bun?" forgetting s is a vector bundle of strictly positive rank. So,
the generic fibre X; of the composition X — ;,149—4 Bung, x Buni" — ,,444—4 Bung, is
irreducible. The generic fibre of (8.4) is open in X, so it is also irreducible. 0

Combining Lemmas 8.4.1 and 8.1.1 one gets the following.

Corollary 8.4.2. Assume that 62.31)70 is not empty. For g =0 assume m <1, for g > 1

assume m < 2 —2g (resp., m < 3 — 3g). Then the perverse sheaf PH33972™(8§™) oyer
Yd, contains IC(Zp) (resp., contains 1C(Zp) with multiplicity one). O

Remark 8.4.3. i) The following is well-known (a similar claim with moduli stacks replaced
by coarse moduli spaces is proved in [18]). Assume g = 1. Let G be a semisimple connected
group, T' C G its maximal torus, W the Weyl group of (G,T). Then there is an open
substack W C Bunl: over which the natural map v : Bun% — Bun is a Galois covering
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with Galois group W. Here the action of W on Bun{. is the one induced by the standard
W-action on 7. Given an irreducible representation o of W, denote by £, a perverse
sheaf, which is the intermediate extension under W < BunOG of the isotypic component
of (9)1Qy |w corresponding to o. Since Bun? is irreducible, each £, is an irreducible
perverse sheaf.

ii) Using i) one can strengthen Corollary 8.4.2 in the case g = 1 as follows. If ¢2% is not
empty then the perverse sheaf PH’(8°) over Y% contains IC(Zp) with multiplicity one.
Indeed, for g = 1 and m = 0 the map (8.4) over a suitable open substack of Bung, is a
Galois covering with Galois group Z/27Z.

8.5. From Corollary 8.4.2 and Lemma 4.1.4 one derives the following.

Corollary 8.5.1. For g =0 assume m < 1. For g =1 assume m < 0. For g > 1 assume
m < 3—3g. If 62‘11370 is not empty then PH3 73972 (8™ contains a unique irreducible
subquotient 81" with the following property. The perverse sheaf

* Qm @ 1 im.rel(v
vpSE @ (Qel1](5)) i)
over ¢ Bun} contains Kﬁ.’w as an irreducible subquotient. [

Remark 8.5.2. We expect that each perverse sheaf 8!}’ from Corollary 8.5.1 is isomorphic
to Kz over Bun%, ™42, Though we did not check this claim completely (except in the
cases ¢ = 0 and g = 1 considered in Sections 8.7 and 8.8), a partial evidence for this is

collected in Section 8.6 for the convenience of the reader.

8.6. Partial evidence for Remark 8.5.2. Write Fy : D~ (Bung, )i — D~ (Bung) for
the theta-lifting functor introduced in ([20], Definition 2). For the map (8.4) set

F& = (BN (Qe[1] (%))3_39—4m

Let W¢ be the stack classifying L € Bun?", V € Bung and an isotropic section
s5: L — V. Denote by v} : Wg — Buny the map sending the above collection to V.

Lemma 8.6.1. There is an isomorphism over Bung
1

Fu(Fg,) = (40 Q1)(3))",
where r = —2nm + dim Buny +(2n + 1)(1 — g) = 3 — 3g — 2m + dim Bung) .

Proof. For the map vp, x id : Bung, x Bungy — Bung, x Bungy the complex (vp, x
id)* Autg, g is as follows. Let Wp, g be the stack classifying V' € Bung, a point (8.1) of
Bun’g,, and any section s: L — V.

For a point of Wp, g write § for the composition L? — Sym?’V — Ox. Let evy :
Wg,.u — A! be the map sending the above collection to the pairing of (8.1) with 5. Let
pw : Wg, g — Bunpg, x Bunyg be the projection forgetting s. By ([21], Proposition 1),
there is an isomorphism

1

(v, x1d)* Autg, n ®(@d1](§))dimm(”31) — pwievygly @ (@4[1](%))17,

where b is a function of a connected component of W, i whose value at a point ((8.1), L =
V) equals dim Bun’g, +dim Bung +x(L* ® V'), here m = deg(L).

Write Wiy C Wp, i for the substack given by the property deg L = m. Let Wg
be the stack classifying L € Bun(",V € Bungy and any section s : L — V. By definition,
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Fp(F¢,)) is the direct image with compact support under the projection Wj, 5, — Buny.

The latter decomposes as W, 5 Wg — Bungy. The direct image & evyy, Ly is the
~—m

extension by zero from the closed substack Wiy — W,. Our assertion follows. O

Note that Bung C Wg is the open substack given by the condition that s : L — V
does not vanish. So, Lemma 8.6.1 yields a natural map over Bung

(85) 5™ ® (Qul1)(5))* " - Fu(98,)

whose cone is a constant complex.

Recall that the complex Fy(IC(Bung,)) = ¢ Autg, g does not literally make sense,
here ¢y : Bung, x Bung — Bunpg is the projection. However, our perverse sheaf Ky
appears in PH® of a suitable truncation of the latter complex.

Assume that m satisfies the conditions of Corollary 8.5.1 then pHO(ITg”l) contains
IC(Bung, ) with multiplicity one. So, for this m the perverse sheaf pHO(FH(?gl)) should
contain K. Now (8.5) shows that Ky should appear in PH33972™(8§™). By Corol-
lary 8.5.1, Ky can appear as an irreducible subquoient of PH373972™(8™) with multiplic-
ity at most one.

8.7. Case g = 0. Our purpose is to prove Proposition 2.4.2. We will also calculate
the sheaves 8(11 and compare the answers (the two calculations are independent and will
produce the same result).

We will use the Shatz stratification of Bung (cf. [3], Section 2.10.4 and also [4], [27]).
Let T C B C H be a maximal torus and Borel subgroups. Let A be the corresponding
set of simple roots of B. Write A}} for the dominant coweights of H. For g = 0 the Shatz
strata are indexed by Aj;. Namely, for A\ € A}; let M* C H be the standard Levi whose
simple roots are & €A such that (A, &) = 0. Let P* be the standard parabolic subgroup
with Levi factor M. Write F,,» for the push-forward of O(1) under G,, AT o M
Let Shatz* C Bunps be the open substack classifying Fp» such that Fpr xpa M is
isomorphic to Fp;». The natural map Shatz* — Bung is a locally closed immersion, and
these substacks form the Shatz stratification.

For b € Z./27 write OSh? for the open Shatz stratum in Bun;. Then OSh® = Shatz*
for A =0, and OSh! = Shatz* for A = (1,0,...,0).

Note that dim Bun%;, = dimBuny = n — 2n2. The stack le classifies V € Bung
with an isotropic subsheaf L C V such that there is an isomorphism L= O(1). The open
stratum OSh? is not in the image of 17}2 : mg — Bung. The map 17(19 is an isomorphism
over OSh'. So, for each b € Z/27 the perverse sheaf PH'(8') vanishes over OSh?.

Lemma 8.7.1. For each b € Z/2Z the stack Bunl; —OSh? is irreducible, its open Shatz
stratum is Shatz®, where A = (1,1,0,...,0) (resp., A= (1,1,1,0,...,0)) for b =0 (resp.,
b =1). The perverse sheaf PH*(8') vanishes over OSh®, and over the subregular Shatz
stratum Shatz> there is an isomorphism

(8.6) PH(8') = IC(Shatz?)

Proof. 1) The image of the proper map 77§, in BunY; equals Bun}, —OSh°. By ([7], Proposi-
tion 1.3.8), Bunb is dense in Bule, S0 Bun; is irreducible. This implies that Bun% —OSh°
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is irreducible. The open Shatz stratum in Bun?, —OSh? is Shatz* for A = (1,1,0,...,0),
the subregular Shatz stratum. For V € Shatz? there is an isomorphism

VZ0(1)@0(1)® 0> o o(-1) @ 0(-1)

So, the fibre of 7§, over V identifies with P*. The codimension of Shatz* in Buny; is one,
so we get an isomorphism over Shatz*

8' = 1C(Shatz*)[1] ® IC(Shatz*)[-1],

and the desired isomorphism (8.6) over Shatz*.
2) Recall the parabolic subgroup R C H defined in Section 2.3.10. Note that R/[R, R] = G,.
The Levi quotient of R identifies with GLo X H,,_5. Write AJ{L g for the semigroup of H-
dominant weights which are orthogonal to all the simple coroots of GLy X Hj,_o.

Let Bung be the stack classifying a R/[R, R]-torsor Fr/r,r on X, an H-torsor Ty

on X, and for each A\ € [\EyR a map K LQR/[R’R] — VéH such that the Pliicker

relations hold as in ([7], Section 1.3.2). Here VX is the corresponding Weyl module (as
in [7], Section 0.4.1). We may simply think of Bung as the stack classifying L € Buny,
V € Bunpy and a section x : L < A%V such that the Pliicker relations hold. Write
Biunfz for the substack of Bung given by the properties deg L = 2 and V' € Bunj;. The
projection vp : mi — Bun}{ is proper, and its image equals Bun}q —OSh!.

Let Bun% C Biunf% be the open substack given by the property that L — A2V is a
subbundle. As in ([7], Proposition 1.3.8) one checks that Bun% is dense in mi Since

Bun? is an irreducible component of Bung, Biunfz is irreducible, so Bun}, —OSh' is also
irreducible.

The open Shatz stratum in Bun}, —OSh' is Shatz* for A = (1,1,1,0,...,0). For any
V € Shatz* the fibre of Dclg over V identifies with P2. The codimension of Shatz* in

Bun}, is 3. So, the #-restriction of 8' to Shatz* identifies with
IC(Shatz*)[3] ® IC(Shatz*)[1] ® IC(Shatz*)[—1]

The #-retsriction of IC(Bung) to Shatz* identifies with IC(Shatz*)[3]. This yields the
desired isomorphism (8.6). O

One has the involution s of A}, sending A = (ay,...,a,) to sA = (ay,...,ap_1,—ay).
Note that dim Shatz® = dim Shatz**, and the fibre of D}Q over a point of Shatz* iden-
tifies with P¢~!, where a = a1 + ... + an_1+ | @, |. Indeed, for V € Shatz* one has
dim Hom(O(1),V) = a, and any section O(1) — V is isotropic. Let Gy be the group
scheme of automorphisms of V' preserving the symmetric form.

Assume that A = (ay,...,am,0,...,0) with a,,, > 0 and

A:(bl,...,bl;bg,...,bg;...;bk7...,bk;0,...,0),
where b; appears r; times for i =1,...,k, and by > ... > by > 0.
Lemma 8.7.2. Seta =), a;. Then one has

dimGy =(n—m)(2n—2m —1) + Z ri7;(1 4+ b; — bj)
1<i<j<k
m(m — 1)

+ (2n —2m)(m+a) + 5

+(m—1)a
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Proof. We have
(8.7) VIW oo im g W
with W=0(a1) ® ... ® O(am). Recall that dim H,, = n(2n — 1). One gets for the Levi
part
dim H,,_,, + Z Tirj(l +b; — bj)
1<i<j<k
We have to add for the unipotent part dim Hom(V’, W) 4 dim H(X, A2W). One has
dim Hom (02" ™2™ W) = (2n — 2m)(ry(by + 1) + ... + (b + 1))

One also has

. m(m — 1
dim HO (X, A2W) = IS;Sm(ai +a;+1)= % + (m — 1)(; a;)

Note that r1by + ...+ by = a1+ ...+ ap and > r; =m. O

Lemma 8.7.3. 1) The *-restriction of 8' to any Shatz stratum (except the open ones and
the subregular ones) is placed in perverse degrees < 0.
2) Let b € Z./2Z. For all the Shatz strata in Bunb, —OSh® one has

(8.8) 2a — 3 < codim Shatz* = dim Buny — dim Shatz?,
The inequality is strict unless Shatz® is the subregular Shatz stratum. Here for \ =
(aty...,ap) we set a =Y a;.

Proof. 1) Follows immediately from 2).
2) Use the notations of Lemma 8.7.2. For V' € Shatz” given by (8.7) we have dim End(W) >
m?. Indeed, if i # j then dim Hom(O(a;), O(a;)) & Hom(0(a;), O(a;)) > 2.

By Lemma 8.7.2, it suffices to show that
m(m —1)

2

where a = )" a;, and the equality holds only in the cases indicated above. Now (8.9)
rewrites as

(8.10) 2a(2n — 3 —m) > —3m? +m(4n — 1) — 6

(8.9) —4nm +m(2m + 1) +m? + (2n — 2m)(m + a) + +(m—1)a>2a-3,

We always have a > m and the equality is strict unless A = (1, ..., 1). Using the inequality
a > m, we are reduced to show that

(8.11) 2m(2n — 3 —m) > —3m? + m(4n — 1) — 6
The latter inequality rewrites as m? — 5m + 6 > 0. The quadratic function 22 — 5z + 6
takes its minimal value —1/4 at * = 5/2. So, if m € Z then m? — 5m + 6 > 0 and the
equality takes place exactly for m = 2 and m = 3.

The cases m = 2 and m = 3 under the condition a = m correspond exactly to the

subregular coweights A. For them (8.8) is an equality, otherwise the inequality (8.8) is
strict. 0

Lemma 8.7.4. Let d be as in Corollary 8.5.1. Then 8} is isomorphic to the 1C-sheaf of
the subregular Shatz stratum over Bun?{ mod 2.
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Proof. Step 1. Recall that for each a € Z one has the open substack ,Ug C Bungy
defined in Section 7.1. We claim that the isomorphism (8.6) actually holds over _oUpy.
Indeed, the preimage of _sUgy under Dcl;) : m; — Bung is contained in Buné, which is
smooth. So, 8! is self-dual over _sUg. Lemma 8.7.3 now implies that for any b € Z/27Z,
the perverse sheaf PH'(8') over _oUy N Bun?q is the intermediate extension from the
subregular Shatz stratum.

Step 2. Assume first that d = —n or 1 — n. Let W, ™ (resp., W.=") be the stack
classifying vector bundles U € Bun, isomorphic to O(—1)" (resp., to O(=1)""1 @ O).
Then W¢ C ¢Bun? is a substack. Since n > 4, any U € WY admits a quotient vector
bundle isomorphic to O(—1) @ O(—1), so the preimage of W¢ in EZ%O is not empty. Write
WBun% for the preimage of W¢ under Bun% — Bun?. Then Kld;,w does not vanish over
WBun%. Since the image of W Bun% in Bun% is contained in _pU% ™4 2, Kj‘ﬂﬂp does not

vanish over ¢ Bun® Nzt (_oU% ™9 2). Now, for example by Theorem 1, the same holds
for any d such that eZdRO is not empty. Our assertion follows from Corollary 8.5.1 and
Step 1. O

Proof of Proposition 2.4.2. For b € Z/2Z let OBunll’i C Bunl}l be the open substack equal
to the union of O.Sh? and the subregular Shatz stratum in Bunl}i. We have already seen in
Lemma 8.7.4 that for each b € Z /27, X i does not vanish on ,zul;j,. Now by Corollary 7.1.2
and Proposition 7.2.5, for each b € Z/2Z the perverse sheaf PH’(_,K) |_,ue, contains the
unique irreducible subquotient K | LU, -

Now it suffices to show that for each b € Z/2Z the perverse sheaf PH’(_5K) over
OBunY; identifies with IC(Shatz), where Shatz* is the subregular stratum.

To do so, note that _oBung, C Bung, is the open substack classifying trivial G-
torsors, it is isomorphic to the classifying stack B(G1). Recall the map _ag : 2 Bung, x
Bunyg — Bung from Section 2.3.13.

Let first b = 0 and A = (1,1,0,...,0). Over _ Bung, x OSh® the complex Autg, u
identifies with Q,[dim Buny —3], and the #-restriction of Autg, g to _» Bung, x Shatz*
identifies with Q¢[dim Bung —7] by ([19], Theorem 1). Since the codimension of Shatz*
in BunY, is one and

RI.(B(G1), Qo) = &2, Qu[6 + 4k] = Qu[6] & Q,[10] & .. .,

our assertion for b = 0 follows.

Let now b=1and A = (1,1,1,0,...,0). Over _5 Bung, x OSh! the complex Autg, u
identifies with Qq[dim Bung —5]. The -restriction of Autg, g to _o Bung, x Shatz*
identifies with Q[dim Bung —9]. Since the codimension of Shatz* in Bunllg is 3, our
assertion similarly follows for b = 1. O

Remark 8.7.5. Actually, one may show that for ¢ = 0 and any d € Z(e, P) the fibre
of vp : ©Bun% — Buny over a point of the subregular Shatz stratum of Bunf, ™ 2 is
irreducible. So, in this case the isomorphism (2.12) of Theorem 2.3.3 determines Xy up

to a unique isomorphism.

8.8. Case g = 1.
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8.8.1. Let T' C H be the standard maximal torus, write W for the Weyl group of (H,T).
Sometimes we write W = W(H,,) to express the dependence on n. The stack Bun%
classifies Uy,...,U, € Bun(l), we have denoted by U; the push-forward of the T-torsor
under the weight (0,...,0,1,0,...,0), where 1 appears on i-th place.

The natural map v$ : Bun}. — Bun sends this point to V = 3_,(U; ® U;) with the
induced symmetric form Sym? V' — Ox and a trivialization det V = Ox.

Write OBun% C Bun% for the open substack given by the properties: U; ® Uj is
nontrivial for all 4,7, and U; is not isomorphic to U; for i # j. Let W% C Bun’, be
the image of © Bung under .. The restriction © Buny. — WY of v is a Galois covering
with Galois group W (cf. Remark 8.4.3).

Recall the stack W}h introduced in Section 2.4.3. For n > 3 consider the map

(8.12) e Bunllq2 X Bun%,n_2 — Bunj,

sending (V,V’) to V @ V', the symmetric form being the orthogonal sum of the forms for
V,V'. The restriction of f! to the open substack W}q2 X W?{”,Q is étale, and the image
of this open substack under f! will be denoted W},. Write Wy for the disjoint union of
WY, and Wi,.

Let W’ C W be the stabilizor of the coweight (1,0,...,0) in W. Recall the decompo-
sition of the induced representation from Section 2.4.3

indl'[/‘/l//‘/ (Qg)’—\;@g ® o, P O';L,

where o, 0/, are irreducible with dimo, =n — 1, dimo/, = n.
According to Corollary 8.5.1, we will look for Ky inside the perverse sheaf pHO(SO).
The map D% : BunOQ — Buny over Wy is an étale covering. It is easy to see that

(8.13) 8% lwy, = Qe ® Lo, & Loy,

naturally over W%,. Similarly, over W, x W9 one has a natural isomorphism
H ) Hy H,

—2
(814) (fl)*so - pr; (@é D 'C’Un,—z @ LG;L,2)7

where pry : Wi, x WY, — W9 is the projection.

-2

8.8.2. Recall for a € Z the open substack Uy introduced in Section 7.1. Note that
Wy C _1Ug. Recall the complex JK given by (2.22). We will analyse 1K over Wy.
This will be sufficient, because, by Corollary 7.1.2, for any a < —1 the cone of the natural
map &K — o1 K over _1Uy is a constant complex. So, for any a < —1 any non constant
irreducible subquotient of PH’(,K) |1y, already appears in PH°(_1 K) |y,

Recall the stack , Bung, defined in Section 2.3.13. Note that _; Bung, C Bung,
coincides with the open substack of semistable G-torsors, so we also write Bung, =
—1 Bung,.

Note that GL,, C H is the standard Levi subgroup containing 7. Let v7, : Bunp —
Bun,, be the extension of scalars map with respect to T' < GL,,. It sends (Uy,...,U,) to
Ui®...oU,. Let \/\7Bun91 C Bung be the image of ° Bun(% under v . The restriction

vr o 2 O Buny — WBun®

is a Galois covering with Galois group Sy, the Weyl group of (7', GL,,). For an irreducible
representation 7 of S,, write Lqr,,, - for the isotypic component of (vr,)1Qe |y Bun0 COI-

responding to 7, this is an irreducible perverse sheaf on WBung.
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Let WBun% be the preimage of WBun? under Bun% — Bun®. The natural map

W Bun?D - W Bun% is an isomorphism, so we identify these two stacks. Clearly, W Bung C
¢Bun®.

Lemma 8.8.3. There is a morphism in D™ (W Bun')

Q@ LaL, .0, — Vvp(1K)

whose cone is a constant complex.

Proof. Recall the map mp : 8p — Yp introduced in Section 2.3.1. Write WSp C 8p for
the open substack classifying (s : U — M) € 8p such that M € _; Bung,, U € WBun%.
Let 'W8p C W8p be the closed substack given by s = 0, and “W8p be its complement
in WSP

If U € WBun® then Hom(A2U,Q) = 0, so the projection Yp — Bun, becomes an
isomorphism over WBung. The restriction of mp to W8p becomes a morphism mw p :
W8p — WBun? sending (U, M, s) to U. This is our definition of my_p.

Proposition 4.1.1 implies an isomorphism

vp (1K) = (mw, )i Qe
over W Bung. The contribution of "W8p to the latter direct image is a constant complex.

Finally, “WSp identifies with the stack classifying U € WBun?L and a surjection U — Uy
on X, where Uy € Bun(l). The map vr,, decomposes as

0
T™W,P
OBuny — “W8p " WBun?,

where Omyy p is the restriction of mw p. This yields an isomorphism (°my p)1Qr = Q @
LaL,,0,- We are done. g

Lemma 8.8.3 combined with Proposition 7.2.5 implies that Xz does not vanish at the
generic point of BunY. Indeed, we see that PH’(_, K) lwo, contains a perverse irreducible
subquotient, which is a not an almost constant local system.

Note that v;L,, = LaL, 0, canonically, and vpLsr SQ @ LaL, .0, We conclude
that Xy is isomorphic either to £, or £,/ over BunY,. To decide which of the two cases
is realized we use Lemma 8.8.4 below.

Denote by *Bungf C Bung, the open substack of Gi-torsors which are in addition
regular semisimple, that is, of the form A @ (A* ® Q) for A € Bun! with A? nontrivial.

Denote by 0°% C °Bung x WY the open substack given by H'(X,M ®@V) =0,
where M € Bung,, V € Bung. For a point of Bung xWY not lying in 0% one has
dmH (X, M @V) = 2.

Recall that a point of Bung is written as a collection (Uy,...,U,) with U; € Bun!,
as we have identified 7= GZ,. For 1 < i < n let 0% C “Bung, x 0 Bun? be the closed
substack given by requiring dim Hom(U;, M) = 1. The complement of 0%* X w0, 0 Bun$.
in Bung x°Bunj is the disjoint union of O3* for 1 < i < n. Denote by e; € Ay the
coweight (0,...,0,1,0,...,0), where 1 appears on i-th place.

Lemma 8.8.4. i) Over the open substack Q% C Bung, X Bung one has Autg, g = Qy.
it) For 1 <i < n we have an isomorphism for the x-restriction

(8.15) Aute, g oss = Qe[—2]
Let w € W be such that w(e;) = —e;. Then w preserves 0% and acts on (8.15) as —1.
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Proof. 1) Consider the map 7 : Bung, x Bung — E\U/HG% sending (M, V) to (M ® V,B),
where B = det RI'(X, M)" @ det R['(X, V) ® det RT'(X, O) 2" with the corresponding iso-
morphism B2 = det RT'(X, M ® V). So, Autg, g is defined as 7% Aut. For M € * Bung ,
V € WY one has det RT'(X, V)= det RT'(X, M) =k canonically. Fix an isomorphism
Q=0 on X, it yields a trivialization det RT'(X, ) = k. Our result follows now from the
definition of Aut.
ii) Consider a k-point n of O3® given by M, Fr, where the T-torsor is given by {U,} for
1 < j < n. The image of Fr under w is the T-torsor given by {UJ’} for 1 < j < mn,
where U/ = U}. Let V € Bung be the image of Fr. Our choice of i yields a Q-
structure on the corresponding V € Bunpg given by the isotropic subbundle U; C V. For
any lagrangian subbundle (U C V) € Bun?; such that U; C U, we get an isomorphism
(Aute, 1)y — RI(Hom(U;, M), Q) by ([21], Proposition 1). These isomoprhisms are
independent of the choice of U as above.

The isomorphism (Autg, ), — (Aute, i1 )wy given by the action of w is obtained as the
one in the functional equation for geometric Eisenstein series in ([7], Section 7.3.5-7.3.8).
Namely, it comes from the isomorphism

RT.(Hom(U;, M), Q) = RT.(Hom (U}, M), Qy)

which is a particular case of the following more general ‘functional equation’ isomorphism®.
For any M € Bun,, on X (of any genus) one has the isomorphism

RI(H(X, M), Q) [2x(M)] = R (Hom(M, 2), Qr)

constructed as in ([7], Lemma 7.3.6), it actually holds in families as M varies as an
isomorphism of the corresponding complexes over Bun,,.

Let ‘0% be the complement of Q% in °Bung xW?Y. Consider the line bundle €
on ‘0% with fibre det H(X, M ® V). It yields a map 0% — Bung, , (M,V) — M &
V,det H(X, M®V)). The *-restriction of Aut under this map is given by ([19], Theorem 1).
The element w acts on € |ps+ as —1, because it exchanges the two 1-dimensional summands
H°(X, M ®U;) and H*(X, M ®@ U}) in the 2-dimensional space H*(X, M ® V). Our claim
follows. O

Now (8.13) combined with Lemmas 8.8.4 and 8.8.3 imply that £, does not appear in
K |w(;,~ So, Ky is isomorphic to L,/ over BunH The first part of Proposition 2.4.4 is
proved.

Since we know now that K j‘g’w for d € Z(e, P) even is generically nonzero, from Propo-
sition 7.4.1 we learn that the perverse sheaves 52 coincide with the subquotient L,/ of
PHO(8Y) for d small enough.

8.8.5. End of the proof of Proposition 2.4.4. Let i® Bun C Bun be the open substack
of indecomposable vector bundles. Recall that the map in Bunn — Bun] sending U to
det U is an isomorphism (cf. [23]). Denote by L — W,,(L) the inverse of this map. Recall
that if U € " Bun), then U is stable, in particular End(U) = k.

Let ™ Bun, ' C Bun,' be the open substack of indecomposable vector bundles. The
map U + U* yields an isomorphism " Bun,, =5 ™ Bun,, . Let ™ Bunp' be the preimage
of Bun;1 under vp : Bun;1 — Bun;l. To finish the proof of Proposition 2.4.4, we will
analyze the perverse sheaf K 1372) over Bun}l.

"t was also described in ([20], Lemma 2).
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First, let us remind some well-known properties of indecomposable vector bundles.
They are either proved in or easily obtained from the results of [23]. Let L € Bun} and
W,, = W,(L). One has H*(X, W) = 0. If A € Bun} then dim Hom(A,W,,) = 1, the
image of a nonzero map A — W, is a subbundle, and W,,/A is indecomposable. By
induction, W,, admits a canonical flag of subbundles

0o=W'cwlc...cw"tltcw,

such that W?/Wi=1 is non canonically isomorphic to Ox, and W,,/W"~! is non canon-
ically isomorphic to L. There is an exact sequence 0 — Ox — W, (L) - W,_1(L) — 0
on X. It gives rise to an exact sequence

(8.16) 0= Wy 1(L) = A°W,(L) = A°W, (L) = 0

This sequence allows to show by induction that H°(X, A2W) = 0 and dim H° (X, A2W,,) =
n — 1. This implies “* Bun,,* C ¢ Bun,*.

Further, any subsheaf of W,, of degree > 1 coincides with W,,. If A € Bun(lJ then
W,(L) ® A is also indecomposable, so W, (L) ® A = W, (L ® A™).

Write Y5(L) for the scheme classifying subbundles £ C W, (L) of rank 2 such that
there exists an isomorphism det E— Ox, but it is not fixed. In this definition one may
equally require that F is a subsheaf, then it is actually a subbundle.

Let Y7 (L) be the scheme classifying subbundles of rank one and degree zero in W,,(L). If
n > 2 then Y1(L)= @ﬁ) naturally, here m(l) denotes the Picard scheme of line bundles
of degree zero on X. The latter map sends (A C W,,) to the isomorphism class of A.

Let Y1,1(L) be the scheme classifying flags £y C E C W, (L) in W, (L), where E €
Y5(L), and Ej is a subbundle of rank one and degree zero.

Assume n > 3. The map Y7 1(L) — Yl(L):?m(f sending (E; C E) to E; is an
isomorphism. This follows from dim Hom(E;, E/E;) = 1.

The map 711 : Y11(L) — Ya(L) sending (E1 C E) to E is surjective and proper. If
E C W, is a subbundle of rank 2 and determinant O, then FE is semistable. Pick a line
subbundle £y C E with deg F4 = 0. If E12 — Ox then the exact sequence 0 - E; — E —
E} — 0 does not split, and ﬂl_%(E) is a point. If E? is not trivial then the latter exact
sequence splits, and 7, L(E) consists of 2 points. This shows that Y5(L) is the quotient of
Bun! by the automorphism A +— A~'. In turn, this yields an isomorphism Y(L) = P'.

Write Ly, for the line bundle on Y3(L) with fibre H*(X,A%E) at E. Let ay, € Z be
such that Ly, = O(ar) as a line bundle on P*.

Write Ya(L) for the scheme of v € H°(X, A2W,,(L)) such that the image of v : W — W,
is of generic rank at most 2. Then }72(L) — {0} is the total space of Ly, with zero section
removed.

Remark 8.8.6. Let W be a finite-dimensional k-vector space. The exteriour product
(N2W) @ (A2W) — A*W is symmetric, so yields a map Sym?(A2W) — A*W. An element
w € A?W is decomposable iff w A w = 0 in A*W. So, Ya(L) is the scheme of sections
v € H'(X, A\2W,,) such that v A v = 0 in H*(X, A*W,,).

Lemma 8.8.7. Ifn = 4 then there is a nondegenerate quadratic form q : HO(X7 NW,) —
k such that Yo(L) is given by the equation q(v) = 0 for v € HY(X,A?W,,). In this case
arp, = —2.

Proof. Define ¢ as the composition

H(X, A2W,,) — HO(W, Sym?(A2W,,)) — HO(X, det W,,),
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where the first map sends v to v ® v. One has dim H*(X, det W,,) = 1, so we may view ¢
as a quadratic form with values in k.

Let us first show that the kernel of ¢ is at most 1-dimensional. Pick a subsheaf A; &
At @ Ay ® Ay C Wy such that A; € Bun{, and all the 4 line bundles A;, A}, As, A5 are
pairwise non isomorphic. Let v; € HY(A%(A; @ AZ)) be a nonzero section. Then ¢ is
nondegenerate on the subspace of HO(X , A2W,,) generated by vy, ve. So, the kernel of ¢ is
at most 1-dimensional. Since Y5(L) — {0} is smooth, it follows that ¢ is non degenerate.
The last assertion is now easy to check. O

The following lemma is immediate from ([19], Proposition 3).

Lemma 8.8.8. Let V' be a 3-dimensional k-vector space with a nondegenerate quadratic
form q:V — k. Let Y C V be the closed subscheme given by ¢ = 0. Let b : V=V*
be the symmetric bilinear form corresponding to q. Let V C V* be the open subscheme,
the complement to the image of Y by b. There is a unique up to isomorphism rank one
and order two local system Evy on 'V, which is G,, x SO(V, q)-equivariant. Let I, be the
intermediate extension of Ev[3] to V*. Then Foury(IC(Y))—=1J,.

We need the following generalization of Lemma 8.8.8.

Lemma 8.8.9. Let W be a 2-dimensional vector space and d > 1. Let Y C Symd W be
the closed subscheme, the image of the finite map W — Sym? W given by w — w®. Then
Foury, (IC(Y)) generically over Sym® W* is a (shifted) local system of rank d — 1.

Proof. For a f € Sym*W* let B; : Y — A' be the composition Y < Sym* W ENUNS
Clearly, IC(Y) = Qq[2]. For a sufficiently general f calculate the Euler characteristic of
BiLy. To this end, calculate first B7Ly, where h @ Y — {0} — P(W) is the natural
Gyn-torsor. Here P(W) is the projective space of lines in . The details are easy and left
to a reader. (]

Lemma 8.8.10. For any L € Bunj one has ar, = 2 — n, that is, Ly, = O(2 —n) on P

Proof. We will show that 77, Ly, is of degree 4 — 2n. Consider the line bundle £; on
Bun{ whose fibre at F; € Bun{ is Hom(E;, W, (L)). Let z € X be such that L= O(x).
Let 7, : X — Bun! be the map sending y to O(z —y). We claim that 7:£; = O((1 —n)z).
This is proved by induction. For n = 1 one has canonically Hom(O(xz — y), O(x)) = k,
so the line bunlde £; is trivialized in this case. For n > 1 consider the exact sequence
0 — Hom(FE;,0x) — Hom(E, W, (L)) 5 Hom(FEy,W,_1(L)). The map & between
the corresponding line bundles on Bung is regular and vanishes only at F; — O with
multiplicity one. So, r:L; = O((1 — n)x).

Consider the line bunlde £y on Bun{ with fibre Hom(E;,W,,) at E; € Bun). One
shows by induction that 75Ls = O(—(n + 1)z). Indeed, for n = 1 we have a regular map
H(X,0(2z — y)) — O(22)/0(x) which is nonzero for y # z, and has a zero at y = = of
order 2. The induction step is as above.

Write 1012 for the total space of L5 with zero section removed. Let £3 be the line bundle
on Lo whose fibre at (F1,s) is Hom(ET, W, /Im(s)), here s : By < W,,. Of coarse, Lo

descends with respect to the projection £1 — Bun(l) sending (E1, s) to E1, so we view it as
a line bundle on Bun{. We have an exact sequence 0 — Hom(FE§, ;) — Hom(Ef, W,,) 2
Hom(E;, W, /Im(s)) for any inclusion s : E; < W,,. The map v between line bundles

over Bun(f is regular and vanishes exactly at 4 points, so deg(L3) =3 — n.
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Finally, we obtain deg 7y ; Ly, = deg L1 +deg L3 =4 — 2n. O

Since dim H°(X, A?W,,) = n — 1, Lemma 8.8.10 implies that there is a 2-dimensional
space E and an isomorphism Sym" ™2 E = H°(X, A2W,,) such that Y3(L) is the image of
the map

E S Sym" 2 ES HO(X, AW,,),
where £(e) = "2, Now by Lemma 8.8.9, the Fourier trasform Foury(IC(Ya(L))) is
generically a shifted local system of rank n — 3. This shows that K ;b} | Bunl, is generically
a (shifted) local system of rank n — 3.

Now the isomorphism (8.14) combined with Corollary 8.5.1 shows that (f1)*8%; = Q,X
Ly, .. Now applying Proposition 7.4.1, we see that Ky |Bun}{ is uniquely determined
by the isomorphism (2.12) of Theorem 2.3.3. The fact that for n = 4, Xy [gun, is
generically a (shifted) local system of order two was already established in Lemma 8.8.8.
Proposition 2.4.4 is proved.

9. GENERALIZATIONS FOR OTHER SIMPLE GROUPS

9.1. Inspired by our construction of Xy and the results on the Fourier coefficients of
minimal representations ([13], Theorem 5.2), we propose the following generalizations of
Theorem 2.3.3.

Let G be a connected simple algebraic group (not necessarily simply connected). Let
P C G be a maximal parabolic subgroup with an abelian unipotent radical U C P. Let
M C P be a Levi subgroup of P. Let P~ be the opposite parabolic subgroup with respect
to some maximal torus T C M. Write U~ for the unipotent radical of P~.

The maximal parabolic subgroups with an abelian unipotent radical have been classified
in ([25], list of possible cases in Remark 2.3). So, G is of type A,,, By, Cy, Dy, Eg or Ex.

We may view U as a linear representation of M, write U* for the dual representation.
By loc.cit., the group M has finitely many orbits on U~ = U*. On the set of M-orbits in
U* one has an order, namely O; < O, iff Oy is contained in the closure of Os. By ([25],
Proposition 2.15), this order is linear, and there is a unique M-orbit Z C U* such that
the closure Z of Z is Z U {0}.

Let Bung be the stack of G-torsors on X, and similarly for Bunp, Buny,;. The stack
Bunp classifies Fas € Bunjs and an exact sequence 0 — Usg,, =7 — Ox — 0 on X. Here
Us,, = (U x Fpr)/M is the vector bundle on X obtained out of U by twisting with ;.

Let Yp be the stack classifying Fys € Bunys and a section v : Ug,, — €. Then Bunp
and Yp are dual generalized vector bundles over Bunj,;, so one has the corresponding
Fourier transform functor Foury,, , : D(Yp) — D~ (Bunp).

The G,,-action on U* by scalar multiplications commutes with the M-action. Let
Zp C Yp be the closed substack classifying (Fas, v) such that v is a section of Z(}“NI)Q. Here
Z3,, .0 is the closed subscheme of the total space of U. F,, @2 obtained as the corresponding
twisting of Z. Let Zp C Zp be the open substack given by the property that v is a section
of Z(;M,Q - Zﬁ“]qu.

Let ¢ Buny, C Buny, be the open substack given by H(X, Us,,) = H*(X,Q® Us,,) =
0. Write ¢Yp, ¢ Bunp for the preimage of © Bunj; in the corresponding stack. The natural
map vp : ¢ Bunp — Bung is smooth.

If G is of type C), assume G simply-connected. If G is of type B, or C,, write W
for the standard representation of G. Write A for the line bundle on Bung with fibre
det R['(X, Ws,) at Fg € Bung. Let Bung be the pa-gerb over Bung of square roots
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of A. It classifies F¢ € Bung, a 1-dimensional vector space B and an isomorphism
B2= det RI'(X, Wy,,).
We have a diagram

“Yp ¢Bunp

h e N ve

¢ Bun,, Bung,

where °Yp and ¢ Bunp are dual vector bundles over ¢ Buny;. For G of type C,, the map
vp lifts naturally to a map vp : Bunp — Bung.

Conjecture 9.1.1. Assume that G is not of type By, or C,. There is a perverse sheaf
K on Bung with the following property. If d € m (M) and eZdRO is not empty then there

. . . d
ezists an isomorphism over ¢ Bunp

_ 1o N
vpKa @ (Qu[1](3)) "™ 07 = Foury ,  (IC(2p))

Remark 9.1.2. i) For G = Sp,,, Conjecture 9.1.1 should be corrected as follows. In this
case K¢ is a direct summand in the theta-sheaf on Bung introduced in ([19], Defini-
tion 1), and vp should be replaced by 7p. With this correction Conjecture 9.1.1 holds for
G = Spy,, ([19], Proposition 7).

ii) We don’t know if Conjecture 9.1.1 should be true for type B, (even with Bung even-
tually replaced by ]§1Tng) Recall that at the level of functions, a metaplectic ps-covering
of SO; admits a minimal representation ([26, 28]), whence for n > 4 it is known that the
minimal representation does not exist for SQ,,,,; (or its metaplectic coverings).

9.2. If G is of type FEg or E7, the perverse sheaf K from Conjecture 9.1.1 should be
the geometric analog of the corresponding minimal representation. More precisely, it
should satisfy the Hecke property corresponding to the subregular unipotent orbit in the
Langlands dual group G (precisely as in Conjecture 2.3.4).

We also conjecture that for X of genus one the perverse sheaf X of Conjecture 9.1.1
is isomorphic to £,/, where ¢’ is the reflection representation of the Weyl group of G.

APPENDIX A. ALMOST CONSTANT LOCAL SYSTEMS ON Bung

A.1. Assume the ground field k algebraically closed. Let G be a semi-simple algebraic
group, G*¢ its simply-connected covering, let A be the finite abelian group defined by the
exact sequence 1 — A % G*¢ — G — 1.

Pick a connected torus T and an injective homomorphism ¢ : A — T, set Ty = T/A.
Let G1 = (T x G*¢)/A, where the map A — T x G*¢ is (¢,i). We get exact sequences
1-A—->G —-Ti xG—1land1—T — G; — G — 1 over Speck.

Given b € 71(G), pick any b € 71(G1) over b and let (¢,b) € m1(T1) x m1(G) be the
image of b under m (G1) = m1 (T} X G). Pick any Fr, € Bunf,. Write Bunl&l’gT1 for the

stack Bunz1 X Bunr, Spec k, where we used the map I, : Speck — Buny, to define the
fibred product. The projection

(A.1) f: BunEGhC;T1 — Bunl,

is smooth and surjective. It is not representable, the group A act on each fibre of f by
2-automorphisms. But after getting rid of this 2-action, the map f becomes a Galois
covering of Bunl& with Galois group H' (X, A).
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Definition A.1.1. Say that a local system K on Bunlé is almost constant if f*K is
constant, that is, there is m > 1 and an isomorphism f*K — Q}".

Since T is contained in the center of GG1, we have a natural action map Buny x Bung, —
Bung, .

If & € m1(G4) is another element over b let (¢, b) € m1(T1) x 71 (G) be the image of b'.
Pick any 7. € Bun%,l. Let F be the T}-torsor on X of isomorphisms Isom(Fr,, 7, ). In
other words, Buny, is naturally a group stack and ?’Tl =T, ® F for the corresponding
product ® in Bung,. If € Bunp, then ¢ is in the subgroup 7 (T") < 71 (71), so one may
pick a lifting of F to a T-torsor F on X. Then F gives rise to a commutative diagram

Bunli’Glyth1 ER Bun%,
R s

b
Bun/,, -
Gl,:}daﬂl )

where the vertical arrow is the action of F on Bung,. This shows that the notion of an
almost constant local system does not depend on our choices of b and Fr,.

One checks that this notion does not depend on a choice of (¢, T). Note that for b =10
an irreducible perverse sheaf K € P(Bun,) is almost constant if its restriction to Bungse
is constant. To see this, take b = 0 and Fr, to be a trivial Tj-torsor then (A.1) idenitifes
with the projection Bungse — Bunoc.

Since Hl(X ,A) is abelian, any almost constant irreducible local system on Bunlé; is of
rank one and finite order.

The following conjecture was communicated to us by Drinfeld. We have not found a
reference for its formulation or a proof2.

Conjecture A.1.2. Any smooth Qu-sheaf on Bungse is constant.

In view of this conjecture any local system on Bung should be almost constant.

Consider an Arthur parameter (o, o) : m(X) x SLy — G, where a : m(X) — Z(G)
is a homomorphism with values in the center of G, and o corresponds to the principal
nilpotent. We have canonically Hom(H*(X, A), o) = H' (X, Z(G)), so a can be seen
as a character a : H (X, A) = jo. We associate to o the local system on Bung whose
restriction to Buny, is the isotypic component in f;Q; for the map (A.1) on which H (X, A)
acts by . We expect this local system to be the automorphic sheaf corresponding to the
above Arthur parameter.

We will use only the following weaker result.

Proposition A.1.3. Let W € Rep(G), K be an almost constant local system on Bung,
and x € X. There is r > 0, almost constant local systems K; on Bung and d; € Z such
that ;Hg (W, K) = @i_, K;[d;].

Proof. Pick any b,b’ € m1(G1). Denote by b,b’ € 1(G) and ¢,¢’ € m(T1) the images of
b, b’ respectively. Pick a Ti-torsor Fr, € Bunf, and set ¥, = Fp, ((¢/ — ¢)z). This makes
sense, because ¢’ — ¢ is a coweight of T7.

Write ,Hq (b, b') for the Hecke stack classifying F € Bunlé, Fi € Buan/, B:Fa—=F5 |x—a-
We have the diagram

h

Bun®, = e, V) 5 Bun?,

2Conjecture A.1.2 would follow form the f-adic version of the results of [9].
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where h*~ (resp., ™) sends the above point to T (resp., to Fy;). Similarly, we have the
stack He, (b, b') included into a diagram of projections

BunBG1 = +He, (b, ) n Bung1
Let ,H(b,V') be the stack obtained from ,Heg, (b,b') by the base change (Fr,,97,) :
Spec k — Bunp, x BunCTll. We get the diagram

>
X

BunzIJTl <: 2H(b, ) Bunzc’;hCr/T1
s ih ls
Bun’, & L He®,V) 5 Bun¥

The key observation is that both squares in this diagram are cartesian.
We may assume that K is supported on Bung. Let 8 be the spherical perverse sheaf
on Grg corresponding to W. By definition,

HE (8, K) = hi (+xSXK)"

(see [20], Section 2.2.1). We may assume that *8 X K is supported on ,Heg(b,b'). The
above diagram yields an isomorphism

HG (8, 1Qe) = fiHg, (8, Q)

Since ;Hg, (8,Qy) is a constant complex on BunBG . Fp, » our claim follows. O

APPENDIX B. CONNECTEDNESS ISSUES

B.1. Assume the ground field %k algebraically closed. Let G be a semi-simple algebraic
group. We pick a Borel subgroup B C G and its maximal torus T C B, write A (resp.,
A) for the weights (resp., coweights) lattice of Tg. Write A for the dominant weights of
(G, Tq), let wg be the longuest element of the Weyl group of (G, Tg). Let BC P C G be a
standard parabolic subgroup, Up C P its unipotent radical, write M for the corresponding
standard Levi subgroup of P.

For \ € A write Buné‘« .. for the connected component of Bunr, classifying F € Bunr,
such that for each A € A one has deg L2 = (A, ). For d € 7, (M) write Bun?, for the
connected component of Bunj,s containing the image of Bun{,\b for any A € A over d.
Write Bunfg for the preimage of Bunﬁl\/[ under the natural map Bunp — Bunj;. Write
g (resp., p) for the Lie algebras of G (resp., of P). Let °Bun% C Bun$ be the open
substack classifying F € Bun% such that for any irreducible P-submodule V' of g/p one
has H'(X, V#) = 0. The natural map vp : © Bundp — Bung is smooth.

Proposition B.1.1. Letd € w1 (M), writeb € m1(G) for the image of d in w1 (G). Assume
that there is a lifting of d to an anti-dominant coweight A € A such that for each negative
root & of (G, Tg) one has 2g —2 < (&, \). Then the generic fibre of vp : ° Bun}ig — Bunl&
is geometrically connected. So, there is a non empty open substack of Buan such that
each fibre of the latter map over a point of this substack is geometrically connected.

Proof. Pick T, ¢ : A — T and define Ty, G as in Section A.1. Let P; (resp., By, M1) be
the preimage of P (resp., of B, M) under G; — G. The diagram is cartesian

vp
Bung, — Bunp, — Bung,

+ { +

Bung — Bunp 2 Bung
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Let Ay be the _coweight§ lattice of By, the Erojection A1 — A is surjective. Pick Ae M
over \, write d (resp., b) for the image of X in w1 (M) (resp., in 71(G1)). It suffices to
prove that the generic fibre of vp, : ° Bunﬁlj1 — Bunlé1 is geometrically connected. The
second assertion would also follow using Lemma B.1.2.

Note that A is anti-dominant for G, and for each negative root & of G, we have
2g—2 < (&, A). This implies that the map vp, : Bun%1 — Bung1 is smooth, and similarly
for Bung, — Bunp,. So, it suffices to show that the generic fibre of vp, : Bun%1 — Bunlé;1
is connected. By Lemma B.1.3 below, it suffices to show that Bung1 X Bun, Bunf_&;1 is

1

connected. ~ -

The stack Bun%1 is smooth of dimensioon (g —1) dim By — (), 2p), and Bung is smooth
of dimension (g — 1) dim G. Here f is the half sum of positive roots of (G1, B1). So, the
stack Bung1 X Bunf, Bung1 is smooth of pure dimension (g — 1) dim T, — 2(), 24), here
T¢, is the preimage of T under G; — G. Let

= by _ by
J Y — Bunp, X Bunk,, Bunjp,

be the open substack given by the property that the two Bj-structures on a given G-
torsor are transversal at the generic point of X. One checks that the complement Y of Y
is of dimension < (g —1) dim T, —2(},2p). Thus, it suffices to prove that Y is connected.

To do so, consider the map ¢ : Y — Bun%c1 defined as the composition

b
Bung,

Yy Bun?;,1 X Bun;‘B1 2 Buné1 — Bunécl,

here pr, is the projection on the second factor. Since Bung‘b is smooth and irreducible
and ¢ is smooth of constant relative dimension, it siffices to show that each fibre of ¢ is
connected.

The fibre of q over any F € Bung‘«cl is isomorphic to the twisted versions of the Zastava

space igl,bl (X) in the notation of ([6], Section 2.12) corresponding to the parameter
0 = wo(\)—A. The twist is due to the fact that the trivial T, -torsor used in the definitrion
of the Zastava is replaced by an arbitrary point of Bun%Gl . Note that 6 is a sum of positive
coroots. Now ([6], Proposition 2.25) combined with (loc.cit., Propositions 2.19 and 2.21)
imply that each fibre of ¢ is connected. We have also used the fact that the derived group
[G1,G1] of Gy is simply-connected, as the results of [6] require this assumption. O

The following is proved in ([14], Proposition 9.7.8, p. 82).

Lemma B.1.2. Let S be an irreducible scheme with generic point n. Let f : Y — S be
a finitely presented morphism of schemes. Assume that the fibre f=1(n) is geometrically
irreducible (resp., geometrically connected). Then there is a non empty open subscheme
U C S such that for any s € U the fibre f~1(s) is geometrically irreducible (resp., geo-
metrically connected). O

Lemma B.1.3. Let S and Y be smooth irreducible k-schemes, let f :' Y — S be a smooth
morphism (of some constant relative dimension). Assume that Y xgY is connected. Then
there is a non empty open subscheme U C S such that for each s € U the scheme f~1(s)
is geometrically connected.
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Proof. Write n (resp., ¢) for the generic point of S (resp., of Y). Set ¥, = f~*(n). Since
Y Xg Y is connected and smooth over k, it is irreducible. Let v be the generic point of
Y Xs Y.

Consider the projection pry : Y Xg Y — Y. The generic fibre of pr, over ¢ is Y3, x,, ¢.
Since v is dense in Y), x,, ¢, the scheme Y, X, ¢ is irreducible. Clearly, it is actually
geometrically irreducible. Now apply Lemma B.1.2 to prs. O

APPENDIX C. CASE OF CHARACTERISTIC ZERO

C.1. Assume the base field k algebraically closed of characteristic zero. Work with D-
modules instead of étale Q-sheaves. In this case one uses the homogeneous Fourier
transform, so we omit 1 in some notations, for example the D-module Kp,, introduced
in Section 2.3.1 is now denoted Kp.

Theorem 2.3.3 holds in the characteristic zero case. In this appendix we briefly explain
the changes to be made in our proof of Theorem 2.3.3 for D-modules.

Write b for the Lie algebra of H. The cotangent bundle T* Bung is the stack classifying
(V,0), where V € Buny and ¢ € H(X, %, @ Q) = Hom(A?V, Q) (cf. [3]). Write Z C b*
for the closure of the minimal nilpotent orbit Z in h*, the complement of Z in Z is the
origin in bh*.

Let € C T* Buny be the substack classifying (V, o) such that o is a section of Zy o —
X. Here Zyq C by, ® Q is the closed subscheme obtained as the corresponding twist
of Z. Then € contains the zero section of T* Bung, write €’ for the complement of this
zero section in €. Then €’ admits a stratification by locally closed substacks €™, m > 0.
Here C™ is the stack classifying V' € Bungy with an isotropic subbundle Vo C V of rank
two, D € X(™) and an isomorphism Q(—D)= det(V/V_5). Here we have denoted by
V_o C V the orthogonal complement to V5 in V. The stack €™ is smooth of dimension
dim Bung —(2n — 4)m. Since €° is contained in the global nilpotent cone, from ([3],
Theorem 2.10.2) one derives that €° is a lagrangian substack of 7* Bung.

The formulation of Proposition 7.2.5 is changed as follows.

Proposition C.1.1. The irreducible subquotients JC{I( of Ky over U8, all coincide for
d mod 2 = b. The resulting irreducible subquotient is denoted Ko p. If F' is a different
irreducible subquotient of Ky over U8, then F is a (shifted) local system over the whole
of Bun';.

To prove Proposition C.1.1, keep only the following part of Lemma 7.2.9 (its proof
holds without changes in characteristic zero case).

Lemma C.1.2. Let F be an irreducible D-module on Bunb, for some b € Z/27. Let I be
an infinite bounded from above set of integers. Assume given for each d € I a D-module
F¢ on ¢Bun? and an isomorphism (7.1) over ¢ Bun'p. Assume that if d € I then v (F)

is nonzero over © Bunb. Then F is a (shifted) local system on Bun®;. O

If E — S is a vector bundle, there is a canonical symplectomorphism ¢ : T*(E) —
T*(E*) between the cotangent bundles to the corresponding total spaces. If E= S x Ey
is a trivialization of E over S, here Ej is a vector space, then T*E—=T*S x Ey x Ej
and T*E* = T*S x Ef x Ey natually. In this case t(a,z,y) = (a,y,—z) for a € T*S,
x € Ep and y € EF. If is remarkable that this symplectomorphism does not depend on
the trivialization of E. For a G,,-equivariant D-module M on E the characteristic variety
of its Fourier transform Four(M) on E* is the image under ¢ of the characteristic variety
of M (cf. [15], Theorem 5.5.5).
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Recall the stack °Zp introduced in Section 2.3.1, it classifies U € ¢ Bun,, M € Bung,
and a surjection U — M. Let T C “Zpo be the open substack given by HO(X, U M) = 0.
Recall that ¢ Bunp and ¢Yp are dual vector bundles over ¢ Bun,,, denote by ¢ : T*(¢Yp) —
T*(*Bunp) the symplectomorphism as above.

The substack T C “Yp is locally closed, and we denote by N (“Yp) the conormal bundle
of Tin ¢Yp.

Lemma C.1.3. Let b € Z/2Z, let F be an irreducible D-module on Bunl}{, Assume
that d € Z(e, P) with d mod 2 = b, and over ¢ Bun the D-module v5(F)[dim. rel(vp)]
contains K& as an irreducible subquotient. Then C° N T*(Bunt}l) is contained in the
characteristic variety of F.

Sketch of the proof One checks that the substack ¢(NJ(°Yp)) C T*(“Bunp) is contained
in
€ XBuny ¢Bunp C T* Buny Xpun, ¢ Bunp C T*(“Bunp)

This implies that €% X gy, © Bun% is contained in the characteristic variety of v5(F)[dim. rel(vp)].
O

Sketch of the proof of Proposition C.1.1 Combining Lemmas C.1.2 and C.1.3 one gets the
following. For each d € Z(e, P) the characteristic variety of JC%[ contains €% xpun,, u’;,.
The D-module Ky over ul}{ admits a unique irreducible subquotient, whose characteristic
variety contains C° x gy u Ul}{, and all its other irreducible subquotients are (shifted) local
systems on ul}{. O

Conjecture C.1.4. The characteristic variety of Kg is C° to which one should possibly
add the zero section of T* Buny — Bung.

Remark C.1.5. We have also proved the following (these claims are not used in the present
paper, so we don’t provide a proof).

i) If n > 4 then the stack €° is smooth, and €°NT* (Bun’;) is irreducible for each b € Z/27.
If n = 2 then C° is contained in 7*(Bun%) and is irreducible. For n = 3 the stack C° is
not irreducible.

ii) Write C° for the image of C° under the projection 7* Bung — Bung. If n = 2 then
€% ¢ BunY, is of codimension one and irreducible. If n > 4 then for each b € Z/27Z the
substack €° N Bunl}I is irreducible and of codimension one in Bunl}{.

iii) Let g > 1 be odd. Then, for d sufficiently small, Braden’s condition ([5], Corollary 3)
holds for IC(Zp) over e‘é%, so that Kj‘i does not vanish at the generic point of Bun%. Thus,
XKy does not vanish at the generic point of Bunl}l for each b in this case. In particular,
the isomorphism (2.12) determines Xy up to a unique isomorphism.
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