Abstract. In this paper we consider a nonlinear Schrödinger equation (NLS) with random coefficients, in a regime of separation of scales corresponding to diffusion approximation. The primary goal of this paper is to propose and study an efficient numerical scheme in this framework. We use a pseudo-spectral splitting scheme and we establish the order of the global error. In particular we show that we can take an integration step larger than the smallest scale of the problem, here the correlation length of the random medium. We study the asymptotic behavior of the numerical solution in the diffusion approximation regime.

Key words. Light waves, random media, asymptotic theory, splitting scheme.

AMS subject classifications. 35Q55, 60F05, 65M12

1. Introduction. Optical fibers have been extensively studied because they play an important role in modern communication systems [1, 2]. In particular, the limitation effects of high bit rate transmission and numerical simulations of pulse dynamics have attracted attention of engineers, physicists an applied mathematicians.

One of the main limitations of high bit transmission in optical fiber is the chromatic dispersion. The different frequency components of the pulse have different phase velocities, which involves pulse spreading. Solutions have been proposed to compensate for the pulse broadening induced by dispersion. A widely used method consists of the periodic compensation of accumulated dispersion by insertion of an additional piece of fiber with a well controlled length and dispersion values. So, we obtain a fiber with dispersion coefficient which is random and fluctuating around his zero mean value. We shall consider such a fiber in this paper.

The evolution of the electric field in an optical fiber with constant dispersion coefficient is governed by the nonlinear Schrödinger equation (NLS)

\[
\frac{i}{\partial z} \frac{\partial u}{\partial z} = d_0 \frac{\partial^2 u}{\partial t^2} + n_0 |u|^2 u
\]

where \(d_0\) (resp. \(n_0\)) is the dispersion (resp. nonlinearity) coefficient. A lot of work has been devoted to the numerical study of this equation using many different discretization schemes. In particular, some papers are devoted to the study of order estimates for splitting methods [5, 9, 14]. Splitting methods are based on the decomposition of the flow of (1.1) into the flows of two partial problems: the linear Schrödinger equation (with \(n_0 = 0\)) and the nonlinear equation (1.1) with \(d_0 = 0\). These partial problems can be solved explicitly.

In this paper we consider the pulse propagation in an optical fiber with a zero-mean random dispersion coefficient. The electric field is solution of a nonlinear Schrödinger equation with random coefficients. One of our goal is to study numerically the evolution of the electric field. We use a Fourier split-step method. This method has already been applied to homogeneous equations, but also to random equations [3, 4].

Different scales are present in the problem: the fiber length, the correlation length of the medium, the typical dispersion length and the nonlinearity length. We take...
into account these different scales to study the asymptotic of the field. We get a limit theorem for the solution of the random nonlinear Schrödinger equation. This limit can be identified as the solution of a stochastic NLS-type equation. We can cite other works dealing with different forms of stochastic NLS equations [7, 8]. We propose two proofs for our limit theorem. The first one is based on the continuity of the Itô’s map of the propagation equation. The second one is based on the error estimate for the numerical solution and approximation-diffusion theorems.

Section 2 is devoted to the presentation of the pulse propagation model in a randomly perturbed optical fiber. In Section 3 we study the nonlinear Schrödinger equation driven by an arbitrary deterministic continuous noise. In Section 4 we propose a numerical scheme and we establish an error estimate. In Section 5 we study the asymptotic behavior of the electric field. Section 6 is devoted to extend previous results to a more realistic nonlinear model for a pulse propagation. In Section 7 we give a formal approach for the global error computation to improve the results of Section 4. Section 8 is devoted to numerical simulations.

2. Formulation. The electric field evolution in an optical fiber with a zero-mean dispersion coefficient is governed by the random nonlinear Schrödinger equation [1]:

\[
\begin{align*}
\frac{i}{\varepsilon} \frac{\partial u}{\partial z} + \varepsilon m(z) \frac{\partial^2 u}{\partial t^2} + \varepsilon^2 f(|u|^2) u &= 0, \\
\quad u(z = 0, t) = u_0(t).
\end{align*}
\]

(2.1)

\(m\) is a centered stationary process and models the dispersion coefficient. \(f\) is an increasing function which models the nonlinear response of the medium to the electric field. The initial condition \(u_0\) is assumed to be in the Sobolev space \(H^2\).

We have written Equation (2.1) in the microscopic scale where the correlation length and the initial pulse width are of order 1. \(m\) models the fluctuations of the dispersion coefficient. In the microscopic scale the amplitude of the dispersion is small. So we introduce a small dimensionless parameter \(\varepsilon \ll 1\) so that the dispersion term is written as \(\varepsilon m(z) \partial^2 u / \partial t^2\). Hence, in the linear approximation, the propagation can be modeled by the linear Schrödinger equation

\[
\begin{align*}
\frac{i}{\varepsilon} \frac{\partial u}{\partial z} + \varepsilon m(z) \frac{\partial^2 u}{\partial t^2} = 0, \\
\quad u(z = 0, t) = u_0(t).
\end{align*}
\]

(2.2)

We now give more precise conditions on the dispersion process \(m\) and the nonlinearity function \(f\). \(m\) is a Markov process with infinitesimal generator \(L\). We assume that \(m\) is centered, stationary, with values in a compact space, and satisfying Doeblin’s condition [12, 13]. As a consequence, \(m\) admits a unique invariant probability measure, and its infinitesimal generator satisfy the Fredholm alternative. For instance we can

\(*L^2\) denotes the space of functions \(L^2(\mathbb{R}, \mathbb{C})\). For every \(p \in \mathbb{N}\), \(H^p\) denotes the Sobolev space \(H^p(\mathbb{R}, \mathbb{C})\)
think the process m as a continuous process Markov process lying on a compact interval, or a càdlàg Markov process lying on a finite set.

We consider that the nonlinearity function f is of class $C^\infty(\mathbb{R}_+, \mathbb{R}_+)$. We assume that there exists a constant $M > 0$ such that $f(x) = x$ if $x \leq M$, $f(x) = 3M/2$ if $x \geq 2M$, $\|f'\|_{\infty} \leq 1$ and $\|f''\|_{\infty} \leq 1$. So, the function $g : \zeta \mapsto f(|\zeta|^2)\zeta$ and all its partial derivatives\(^T\) are Lipschitz functions. The case where $f(x) = x$ for all $x \geq 0$, which correspond to the standard cubic NLS equation, will be considered in Section 6.

The first goal of this paper is to study numerically Equation (2.2). Then we establish an effective propagation equation for electric field when $\varepsilon \to 0$ for ε^\ast.

3. Nonlinear Schrödinger equation driven by a continuous noise. We study in this section nonlinear Schrödinger equation driven by a continuous noise w:

\begin{equation}
(3.1) \quad u(z, t) = u_0(t) + i\sigma_0 \int_{z_0}^{z} \frac{\partial^2 u}{\partial z'}(z', t) \, dw(z') + i \int_{z_0}^{z} f(|u(z', t)|^2) u(z', t) \, dz',
\end{equation}

with $\sigma_0 \in \mathbb{R}$, $z_0 \in [0, 1]$ ($z_0 \leq z$) and $u_0 \in L^2$. The goal of this section is to show that the solution is unique in $C([z_0, 1], L^2)$ and depends continuously on w.

3.1. Existence and uniqueness of the solution. The goal of this subsection is to give a sense to the solution for (3.1). The problem is more suitably written in the mild form as:

\begin{equation}
(3.2) \quad u(z, t) = X_w(z_0, z)u_0(t) + i \int_{z_0}^{z} X_w(z', z) f(|u(z', t)|^2) u(z', t) \, dz',
\end{equation}

where the parameters-dependent inhomogeneous operator X_w is defined as follows.

For a function $v_0 \in L^2$, we give a sense to the solution for the linear problem:

\begin{equation}
(3.3) \quad v(z, t) = v_0(t) + i\sigma_0 \int_{z_0}^{z} \frac{\partial^2 v}{\partial z'}(z', t) \, dw(z').
\end{equation}

We first assume that $w \in C^1([0, 1], \mathbb{R})$. We replace in (3.3) the differential term $dw(z')$ by $w'(z') \, dz'$ where w' is the derivative of w. The unique solution of (3.3) in this case is

$$v(z, t) = \frac{1}{\sqrt{4i\pi \sigma_0 w(z_0, z)}} \int_{-\infty}^{\infty} \exp\left(\frac{i(t-t')^2}{4\sigma_0 w(z_0, z)}\right) v_0(t') \, dt',$$

with

$$w(z_0, z) = \int_{z_0}^{z} w'(z') \, dz' = w(z) - w(z_0).$$

Let us note that the expression of the solution $v(z, t)$ depends only on the increments of w. So, we use the formulation of this solution to define the solution of (3.3) for an arbitrary continuous noise w. We denote by $X_w(z_0, z)$ the flow associated to (3.3) for an initial condition at $z = z_0$:

$$X_w(z_0, z)v_0(t) = \frac{1}{\sqrt{4i\pi \sigma_0 w(z_0, z)}} \int_{-\infty}^{\infty} \exp\left(\frac{i(t-t')^2}{4\sigma_0 w(z_0, z)}\right) v_0(t') \, dt'.$$

\(^T\)The complex valued function g can be seen as a \mathbb{R}^2 valued function: in this paper g' (resp. g'') denotes the gradient vector (resp. Hessian matrix) of g.

with \(w(z_0, z) = w(z) - w(z_0) \). Note that we can write \(X_w(z_0, z)v_0 \) in the Fourier domain as

\[
X_w(z_0, z)v_0(\theta) = \bar{\sigma}_0(\theta) \exp(-i\theta^2\sigma_0 w(z_0, z)).
\]

So, the flow \(X_w(z_0, z) : L^2 \to L^2 \) is well-defined. Moreover, by the Parseval’s theorem, we have for every \(p \in \mathbb{N}, \|X_w(z_0, z)v_0\|_{L^p} = \|v_0\|_{L^p} \), that is to say that \(X_w(z_0, z) \) is unitary in every Sobolev spaces \(H^p \). We denote by \(X(z_0, z) \) the flow \(X_w(z_0, z) \) if there is not ambiguity on the noise \(w \).

Now we can establish the existence and the uniqueness of the solution of (3.2).

Theorem 3.1. Let \(u_0 \in L^2 \). Equation (3.2) admits a unique solution \(u \) in \(C([z_0, 1], L^2) \).

We denote by \(S_w(z_0, z) \) (or \(S(z_0, z) \) if there is not ambiguity on the noise \(w \)) the flow which is associated to (3.2) with initial condition in \(z = z_0 \).

Without loss of generality we assume \(z_0 = 0 \). To show the previous result, we consider the sequence of functions \(((z, t) \mapsto x_n(z, t))_{n \in \mathbb{N}} \) which is defined by: \(x_0(z, t) = u_0(t) \) and for every \(n > 0 \):

\[
(3.4) \quad x_n(z, t) = X(0, z)u_0(t) + i \int_0^t X(z', z)f(\{x_{n-1}(z', t)|2\})x_{n-1}(z', t) dz'.
\]

\(f \) is bounded, then \(t \to f(\{x_{n-1}(z', t)|2\})x_{n-1}(z', t) \) belongs to \(L^2 \) for all \(z \) and \(n \). So \((x_n)_n \) is a well-defined sequence of functions with integrable squared modulus for respect to \(t \).

We establish a regularity result for \(x_n \) in Lemma 3.3 which is a consequence of the following technical lemma.

Lemma 3.2. (i) Let \((\phi_n)_n \) be a sequence of measurable and nonnegative functions. We assume that there exist two constants \(C_1 \) and \(C_2 \) such that \(\phi_0 \equiv C_1 \) and for all \(n \in \mathbb{N}^* \) and \(z \in [0, 1], \)

\[
\phi_{n+1}(z) \leq C_1 + C_2 \int_0^z \phi_n(z') dz',
\]

then

\[
\sup_{z \in [0, 1]} \phi_n(z) \leq C_1 \exp(C_2).
\]

(ii) Let \((\phi_n)_n \) be a sequence of measurable and nonnegative functions. We assume that there exist \(C_3 \) and \(C_4 \) such that for all \(n \in \mathbb{N}^* \) and \(z \in [0, 1], \phi_0(z) \leq C_4 \) and

\[
\phi_{n+1}(z) \leq C_3 \int_0^z \phi_n(z') dz',
\]

then

\[
\sup_{z \in [0, 1]} \phi_n(z) \leq C_4 \frac{C_3^n}{n!}.
\]

Proof.

Proof of (i): We prove by recurrence with respect to \(n \) that \(\phi_n(z) \leq C_1 \exp(C_2z) \).

Proof of (ii): We prove by recurrence with respect to \(n \) that \(\phi_n(z) \leq C_4(C_3z)^n/n! \).
Lemma 3.3. If \(u_0 \in \mathcal{H}_2 \), then the sequence \((x_n) \) is bounded in \(\mathcal{H}_p(\mathbb{R}, \mathbb{C}) \) for all \(p = 0, 1, 2 \), uniformly for respect to \(z \in [0, 1] \) and \(n \in \mathbb{N} \), that is to say that there exists a constant \(C \) which depends only on \(f \) and \(||u_0||_{\mathcal{H}_2} \) such that for all \(n \in \mathbb{N} \) we have

\[
\sup_{z \in [0,1]} ||x_n(z, \cdot)||_{\mathcal{H}_2} \leq C.
\]

Proof. Let \(p = 0 \). \(X(z_0, z) \) is unitary, then

\[
||x_{n+1}(z, \cdot)||_{L^2} \leq ||u_0||_{L^2} + ||f||_{\infty} \int_0^z ||x_n(z', \cdot)||_{L^2} \, dz'.
\]

So by Lemma 3.2, we get

(3.5) \[
\sup_{z \in [0,1]} ||x_n(z, \cdot)||_{L^2} \leq ||u_0||_{L^2} \exp(||f||_{\infty}).
\]

Let \(p = 1 \). From (3.4), if \(x_n \in \mathcal{H}^1 \) then \(x_{n+1} \in \mathcal{H}^1 \), and \(X(z_0, z) \) is unitary, then

\[
||\partial_t x_{n+1}(z, \cdot)||_{L^2} \leq ||\partial_t u_0||_{L^2} + ||g'||_{\infty} \int_0^z ||\partial_t x_n(z', \cdot)||_{L^2} \, dz'.
\]

So by Lemma 3.2 we have

\[
\sup_{z \in [0,1]} ||x_n(z, \cdot)||_{\mathcal{H}^1} \leq ||u_0||_{\mathcal{H}^1} \exp(||f||_{\infty} + ||g'||_{\infty}).
\]

Let \(p = 2 \). \(X(z_0, z) \) is unitary, so

\[
||\partial_t^2 x_{n+1}(z, \cdot)||_{L^2} \leq ||\partial_t u_0||_{L^2} + ||g'||_{\infty} \int_0^z ||\partial_t^2 x_n(z', \cdot)||_{L^2} \, dz' + ||g''||_{\infty} \int_0^z ||\partial_t x_n(z', \cdot)||_{L^4}^2 \, dz'.
\]

By Gagliardo-Nirenberg inequality

\[
|| \cdot ||_{L^4}^2 \leq C g_{n1} || \cdot ||_{\mathcal{H}^1} || \cdot ||_{L^2}
\]

and the beginning of the proof, there exists \(C \) which depends on \(||u_0||_{\mathcal{H}^1} \) and \(f \) such that

\[
||x_{n+1}(z, \cdot)||_{\mathcal{H}^2} \leq ||u_0||_{\mathcal{H}^2} + C \int_0^z ||x_n(z', \cdot)||_{\mathcal{H}^2} \, dz'.
\]

Then, by lemma 3.2 and the previous estimates, we have

\[
\sup_{z \in [0,1]} ||x_n(z, \cdot)||_{\mathcal{H}^2} \leq ||u_0||_{\mathcal{H}^2} \exp(C).
\]

This ends the proof. \(\square \)

Before proving Theorem 3.1 we establish the two following lemmas.

Lemma 3.4. If \(u_0 \in L^2 \), then \((x_n) \) is a Cauchy sequence in \(L^\infty([0,1], L^2) \).
Proof. Let \(p \) and \(q \in \mathbb{N} \). Since \(g' \) is bounded, from (3.4):
\[
||x_{p+q+1}(z) - x_{q+1}(z)||_{L^2} \leq \int_0^z ||g(x_{p+q}(z')) - g(x_q(z'))||_{L^2} dz'
\]
(3.6)
\[
\leq ||g'||_{\infty+1} \int_0^z dz_1 \int_0^{z_1} dz_2 \cdots \int_0^{z_q} ||x_p(z_{q+1}) - x_0||_{L^2} dz_{q+1}
\]
From (3.5), we get
\[
||x_p(z_{q+1}) - u_0||_{L^2} \leq ||u_0||_{L^2} + ||x_p(z_{q+1})||_{L^2} \\
\leq ||u_0||_{L^2}(1 + \exp(||f||_{\infty})).
\]
Substituting into (3.6) and taking the supremum in \(z \in [0, 1] \), we obtain
\[
\sup_{z \in [0, 1]} ||x_{p+q+1}(z) - x_{q+1}(z)||_{L^2} \leq ||u_0||_{L^2}(1 + \exp(||f||_{\infty})) ||g'||_{\infty+1} \frac{1}{(q + 1)!}.
\]
Letting \(q \to \infty \), we establish that \((x_n)_n \) is a Cauchy sequence in \(L^\infty([0, 1], L^2) \). □

Lemma 3.5. The map \(A : L^\infty([0, 1], L^2) \to L^\infty([0, 1], L^2) \)
\[v \mapsto X(0, z)u_0(t) + \int_0^z X(z', z)g(v(z', t)) \, dz' \]
is continuous.

Proof. Let \(v_1 \) and \(v_2 \) in \(L^\infty([0, 1], L^2) \). We have
\[
||A(v_1)(z) - A(v_2)(z)||_{L^2} \leq ||\int_0^z X(z', z)g(v_1(z')) - g(v_2(z')) \, dz'||_{L^2}
\leq \int_0^z ||g(v_1(z')) - g(v_2(z'))||_{L^2} \, dz'
\leq ||g'||_{\infty} \int_0^z ||v_1(z') - v_2(z')||_{L^2} \, dz',
\]
then
\[
||A(v_1) - A(v_2)||_{L^\infty([0, 1], L^2)} \leq ||g'||_{\infty} ||v_1 - v_2||_{L^\infty([0, 1], L^2)}.
\]
The continuity of \(A \) follows. □

Now we prove Theorem 3.1.

Proof of Theorem 3.1 : \((x_n)_n \) is a Cauchy sequence in \(L^\infty([0, 1], L^2) \), so it converges to a limit \(u \) in \(L^\infty([0, 1], L^2) \). By the continuity of \(A \), \(u \) is solution to (3.2). Now we prove that \(u \in C([0, 1], L^2) \). \(X(z_0, z) \) is unitary in \(L^2 \), so for \(z_2 < z_1 \):
\[
||u(z_1) - u(z_2)||_{L^2} \leq ||(X(0, z_1) - X(0, z_2))u_0||_{L^2} + \int_{z_2}^{z_1} ||g(u(z'))||_{L^2} \, dz'
\leq ||X(z, z_1) - X(z, z_2)||_{L^2} + \int_{z_2}^{z_1} ||g(u(z'))||_{L^2} \, dz'.
\]
An application of bounded convergence theorem gives \(u \in C([0, 1], L^2) \). Hence, (3.2) has a solution in \(C([0, 1], L^2) \).
It remains to prove the uniqueness of this solution. Let \(\tilde{u} \) be another solution. The facts that \(X(z_0, z) \) is unitary and \(g \) is Lipschitz give for every \(z \in [0, 1] \):

\[
\|u(z) - \tilde{u}(z)\|_{L^2} \leq C \int_0^z \|u(z') - \tilde{u}(z')\|_{L^2} \, dz'.
\]

So by Gronwall’s lemma, for every \(z \in [0, 1] \):

\[
\|u(z) - \tilde{u}(z)\|_{L^2} = 0,
\]

which implies uniqueness. \(\square \)

We prove a result on the regularity of the solution of (3.2).

Lemma 3.6. Let \(u_0 \in H^2 \). For every \(z \in [0, 1] \), \(u(z, \cdot) \in H^2 \). Moreover:

(3.7) \[
\sup_{z \in [0, 1]} \|u(z, \cdot)\|_{H^2} < \infty
\]

and

(3.8) \[
\sup_{z \in [0, 1]} \|g(u(z, \cdot))\|_{H^2} < \infty
\]

Proof. We fix \(z \in [0, 1] \). By Lemma 3.3, \((x_{n_k}(z))_n \) is in a closed ball of \(H^2 \). Hence, we can extract a subsequence \((x_{n_k}(z))_k \) which weakly converge in \(H^2 \) to a limit \(y(z) \in H^2 \) (because \(H^2 \) is reflexive) and, consequently, in \(L^2 \). But we also have that \((x_{n_k}(z))_k \) strongly converge in \(L^2 \) to \(u \). Hence \(u(z) = y(z) \) and \(u(z) \in H^2 \).

Moreover, for all \(z \in [0, 1] \),

\[
\|u(z)\|_H \leq \liminf_{k \to \infty} \|x_{n_k}(z)\|_{H^2} \leq C
\]

by Lemma 3.3 where \(C \) does not depend on \(z \), so

\[
\sup_{z \in [0, 1]} \|u(z, \cdot)\|_{H^2} < \infty
\]

that concludes the proof of (3.7). The proof of (3.8) is a direct consequence of (3.7) and the boundedness of \(g' \) and \(g'' \). \(\square \)

The second important result of this section is the continuity of the solution of (3.2) with respect to the noise \(w \) (we call this map the Itô map). Here we use the notation \(X_w(z_0, z) \) for the linear flow and \(u_w \) for the solution of (3.2) driven by \(w \).

Theorem 3.7. Let \(u_0 \in H^2 \). The Itô map \(I \) associated to (3.2):

\[
I : C([0, 1], \mathbb{R}) \to C([0, 1], L^2)
\]

\[
w \mapsto u_w
\]

is continuous. In fact, it is a Lipschitz map.

Proof. Let \(w_1 \) and \(w_2 \) be two continuous noises. We have

\[
\begin{align*}
 u_{w_1}(z, t) - u_{w_2}(z, t) &= X_{w_1}(0, z)u_0(t) + i \int_0^z X_{w_1}(z', z)g(u_{w_1}(z', t)) \, dz' \\
 &\quad - X_{w_2}(0, z)u_0(t) - i \int_0^z X_{w_2}(z', z)g(u_{w_2}(z', t)) \, dz' \\
 &= X_{w_1}(0, z)u_0(t) - X_{w_2}(0, z)u_0(t) \\
 &\quad + i \int_0^z (X_{w_1}(z', z) - X_{w_2}(z', z))g(u_{w_1}(z', t)) \, dz' \\
 &\quad + i \int_0^z X_{w_2}(z', z)(g(u_{w_1}(z', t)) - g(u_{w_2}(z', t))) \, dz'.
\end{align*}
\]
so,
\[
\|u_{w_1}(z) - u_{w_2}(z)\|_{L^2} \leq \|X_{w_1}(0, z)u_0 - X_{w_2}(0, z)u_0\|_{L^2} \\
+ \int_0^z \|((X_{w_1}(z', z) - X_{w_2}(z', z))g(u_{w_1}(z')))\|_{L^2} dz' \\
+ \int_0^z \|g(u_{w_1}(z')) - g(u_{w_2}(z'))\|_{L^2} dz' \\
\leq \|w_1 - w_2\|_{\infty} \|u_0\|_{H^2} \\
+ 2\|w_1 - w_2\|_{\infty} \int_0^z \|g'(u_{w_1}(z'))\|_{H^2} dz' \\
+ \|g'\|_{\infty} \int_0^z \|u_{w_1}(z') - u_{w_2}(z')\|_{L^2} dz'.
\]

hence, by Gronwall’s lemma,
\[
\sup_{z \in [0, 1]} \|u_{w_1}(z) - u_{w_2}(z)\|_{L^2} \leq 3C_{\exp(C_{2})} \|w_1 - w_2\|_{\infty},
\]
which concludes the proof. \(\square\)

3.2. Pseudo-spectral scheme. We introduce a pseudo-spectral scheme to solve numerically (3.2) for \((z, t) \in [0, 1] \times \mathbb{R}\). We give the definition of the flow \(Y(z)\) associated to the equation
\[
(i) \frac{\partial v}{\partial z} + f(|v|^2)v = 0.
\]
We consider an initial condition \(u_0 \in L^2\). There exists a unique solution in \(C([0, 1], L^2)\) to Equation (3.9). This solution can be written as
\[
Y(z)u_0(t) = u_0(t) \exp(i f(|u_0(t)|^2)).
\]
We can deduce \(\|Y(z)u_0\|_{L^2} = \|u_0\|_{L^2}\).

We let \(X_n^h := X((n - 1)h, nh)\). We fix an integer \(N\) and we let \(h = 1/N\). We define the function \(t \mapsto u_n^h(t)\) for all \(0 \leq n \leq N\) as an approximation of \(t \mapsto u(nh, t)\). We begin by \(u_0^h = u_0\). Recursively we let for every \(n \in \{0, \cdots, N - 1\}\):

\[
\begin{align*}
\begin{array}{l}
u_n^h \rightarrow u_{n+1}^h : \left\{ \\
\quad u_{n+1/2}^h := X(nh, (n + 1)h)u_n^h, \\
\quad u_{n+1}^h := Y(h)u_{n+1/2}^h.
\end{array}
\end{align*}
\]

The main result of this section is the following:

THEOREM 3.8. We assume that \(u_0 \in H^2\) and there exist two constants \(c, \alpha > 0\) such that for every \(z_0, z \in [0, 1]\)
\[
\sup_{z' \in [z_0, z]} |w(z') - w(z_0)| \leq c|z - z_0|\alpha
\]
There exists a constant C which depends only on g, c and $\|u_0\|_{H^2}$, such that for every $h \in (0, 1]$, and n satisfying $nh \leq 1$:

$$\|u_n^h - u(nh, \cdot)\|_{L^2} \leq C h^a.$$

Before proving Theorem 3.8 we recall and introduce some notations.

We respectively denote by $S(z_0, z)$, $X(z_0, z)$ and $Y(z - z_0)$ the flows associated to Equations (3.2), (3.3) and (3.9) with initial conditions in z_0 and $Z(z_0, z) := Y(z - z_0)X(z_0, z)$. We let $S_n^h := S((n-1)h, nh)$, $Z_n^h := Z((n-1)h, nh)$, $S_n^h := S_n^h \cdot \cdots S_1^h$ and $Z_n^h := Z_n^h \cdots Z_1^h$. We establish a first lemma.

Lemma 3.9. There exists a constant c_0 which depends only on g such that for all u_1 and u_2 in H^2:

$$\|Z(z_0, z)u_1 - Z(z_0, z)u_2\|_{L^2} \leq (1 + c_0(z - z_0))\|u_1 - u_2\|_{L^2}.$$

Proof. $X(z_0, z)$ is unitary and linear in L^2, so it is sufficient to show that

$$\|Y(z)u_1 - Y(z)u_2\|_{L^2} \leq (1 + c_0 z)\|u_1 - u_2\|_{L^2}.$$

We have

$$Y(z)u_1 = u_1 + i \int_0^z g(Y(z')u_1) \, dz'.$$

Using the fact that g is a Lipschitz function:

$$\|Y(z)u_1 - Y(z)u_2\|_{L^2} \leq \|u_1 - u_2\|_{L^2} + C \int_0^z \|Y(z')u_1 - Y(z')u_2\|_{L^2} \, dz',$$

where C only depends on g. By Gronwall’s lemma:

$$\|Y(z)u_1 - Y(z)u_2\|_{L^2} \leq \exp(C z)\|u_1 - u_2\|_{L^2}.$$

There exists $c_0 > 0$ such that $\exp(C z) \leq (1 + c_0 z)$ for every $z \in [0, 1]$, so

$$\|Y(z)u_1 - Y(z)u_2\|_{L^2} \leq (1 + c_0 z)\|u_1 - u_2\|_{L^2},$$

which completes the proof.

Lemma 3.10. Let $u_1 \in H^2$. We have

$$\|X(z_0, z)u_1 - u_1\|_{L^2} \leq |w(z) - w(z_0)|\|u_1\|_{H^2}.$$

Proof. Let \hat{u}_1 be the Fourier transform of u_1. We use the basic estimate $|\exp(ix) - 1|^2 \leq x^2$ to obtain:

$$\|X(z_0, z)u_1 - u_1\|_{L^2}^2 = \int_{-\infty}^{+\infty} \left| \hat{u}_1(\theta) \exp \left(-i \theta^2 (w(z) - w(z_0)) \right) - \hat{u}_1(\theta) \right|^2 \, d\theta
\leq (w(z) - w(z_0))^2 \|u_1\|_{H^2}^2.$$

This conclude the proof.

\[\square\]
Lemma 3.11. Let $u_1 \in H^2$. There exists a constant C_0 which depends only on $\|u_1\|_{H^2}$ such that for every $z \in [0,1]$:

$$||S(z_0, z)u_1 - Z(z_0, z)u_1||_{L^2} \leq C_0 \sup_{z' \in [z_0,z]} |w(z) - w(z_0)|(z - z_0).$$

Proof. We have

$$S(z_0, z)u_1 - Z(z_0, z)u_1 = R_1(z_0, z) + R_2(z_0, z)$$

where

$$R_1(z_0, z) = i \int_{z_0}^{z} X(z', z)\{g(S(z_0, z')u_1) - g(Z(z_0, z')u_1)\} dz',$$

$$R_2(z_0, z) = i \int_{z_0}^{z} \{X(z', z)g(Z(z_0, z')u_1) - g(Y(z' - z_0)X(z_0, z)u_1)\} dz'.$$

We deal separately with $R_1(z_0, z)$ and $R_2(z_0, z)$. $X(z', z)$ is unitary and g is a Lipschitz function, then

$$||R_1(z_0, z)||_{L^2} \leq ||g'||_{\infty} \int_{z_0}^{z} ||S(z_0, z')u_1 - Z(z_0, z')u_1||_{L^2} dz'.$$

By the fact that g is a Lipschitz function and using Lemmas 3.10 and 3.9:

$$||R_2(z_0, z)||_{L^2} \leq \int_{z_0}^{z} ||X(z_0, z')g(Z(z_0, z')u_1) - g(Z(z_0, z')u_1)||_{L^2} dz'$$

$$+ \int_{z_0}^{z} ||g(Z(z_0, z')u_1) - g(Y(z' - z_0)X(z_0, z)u_1)||_{L^2} dz'$$

$$\leq C \sup_{z' \in [z_0,z]} |w(z') - w(z_0)| \int_{z_0}^{z} ||Z(z_0, z')u_1||_{H^2} dz'$$

$$+ ||g'||_{\infty} \int_{z_0}^{z} (1 + c_0(z' - z_0))||X(z_0, z')u_1 - X(z_0, z)u_1||_{L^2} dz'$$

$$\leq C(z - z_0) \sup_{z' \in [z_0,z]} |w(z') - w(z_0)|$$

where the last constant C depends on g and the H^2–norm of u_1. So, following (3.11) there exists a constant C depending on g and the H^2–norm of u_1 such that for every z_0, z_1 and z satisfying $z_0 \leq z_1 \leq z$:

$$||S(z_0, z_1)u_1 - Z(z_0, z_1)u_1||_{L^2} \leq C(z_1 - z_0) \sup_{z' \in [z_0,z]} |w(z') - w(z_0)|$$

$$+ C \int_{z_0}^{z_1} ||S(z_0, z')u_1 - Z(z_0, z')u_1||_{L^2} dz'.$$

The proof is completed by an application of Gronwall's lemma. □

Lemma 3.12. Let $u_1 \in H^2$. There exists a constant C which depends only on g, $\|u_1\|_{H^2}$ such that for every $z \in [0,1]$:

$$||S(z_0, z)u_1 - Z(z_0, z)u_1||_{L^2} \leq C(z - z_0)^{1+\alpha}.$$
Proof. This is a direct consequence of Lemma 3.11 and (3.10).

Now we prove Theorem 3.8.

Proof of Theorem 3.8: We use the telescopic sum

\[u_n^h - u(nh, \cdot) = Z_n^h \cdots Z_1^h u_0 - S_n^h \cdots S_1^h u_0 \]

\[= \sum_{j=1}^{n} \{ Z_n^h \cdots Z_j^h S_{j-1}^h \cdots S_1^h u_0 - Z_n^h \cdots Z_j^h S_{j+1}^h \cdots S_1^h u_0 \}. \]

Taking \(L^2 \)-norm and applying Lemma 3.9 we obtain existence of a constant \(c_0 \) such that

\[||u_n^h - u(nh, \cdot)||_{L^2} \leq \sum_{j=1}^{n} (1 + c_0 h)^{\alpha-j} ||(Z_j^h - S_j^h) S_{j-1}^h \cdots S_1^h u_0||_{L^2}. \]

Using Lemma 3.12 and the uniform boundedness of \(S(z_0, z) \) in \(H^2 \), there exists \(C \) such that

\[||u_n^h - u(nh, \cdot)||_{L^2} \leq C \sum_{j=1}^{n} (1 + c_0 h)^{(n-j)h^{1+\alpha}} \leq C \exp(c_0 h^\alpha). \]

The proof is completed. \(\Box \)

4. Error estimate of the pseudo-spectral scheme for the electric field.

This section deals with the numerical study of the electric field \(u^\varepsilon(z, t) = u(z/\varepsilon^2, t) \) which is solution of

\[(4.1) \quad i \frac{\partial u^\varepsilon}{\partial z} + \frac{1}{\varepsilon} m \left(\frac{z}{\varepsilon^2} \right) \frac{\partial^2 u^\varepsilon}{\partial t^2} + f(|u^\varepsilon|^2) u^\varepsilon = 0 \]

4.1. The split-step scheme. As for (3.2), there exists a.s. a unique solution of \(u^\varepsilon \) in \(C([0, 1], L^2) \) if we take \(u_0 \in L^2 \). We denote by \(S^\varepsilon(z_0, z) \) the flow associated to the problem (4.1) with initial condition in \(z = z_0 \).

We introduce the split-step scheme to solve numerically (4.1) for \((z, t) \in [0, 1] \times \mathbb{R}\). We consider the problems:

\[(4.2) \quad i \frac{\partial v^\varepsilon}{\partial z} + \frac{1}{\varepsilon} m \left(\frac{z}{\varepsilon^2} \right) \frac{\partial^2 v^\varepsilon}{\partial t^2} = 0 \]

\[(4.3) \quad i \frac{\partial v^\varepsilon}{\partial z} + f(|v^\varepsilon|^2) v = 0. \]

We denote respectively \(X^\varepsilon(z_0, z) \) and \(Y(z - z_0) \) the flows associated to Equations (4.2) and (4.3) with initial condition at \(z_0 \).

We let \(X_n^{\varepsilon,h} := X^\varepsilon((n-1)h, nh) \). We fix an integer \(N \) and we let \(h = 1/N \). We define \(u_n^{\varepsilon,h} \) for every \(0 \leq n \leq N \) as an approximation of \(u^\varepsilon(nh, \cdot) \). We begin by \(u_0^{\varepsilon,h} = u_0 \). Then we define recursively for every \(n \in \{0, \cdots, N-1\} \):

\[u_n^{\varepsilon,h} \rightarrow u_{n+1}^{\varepsilon,h} : \]

\[u_n^{\varepsilon,h} + \frac{1}{\varepsilon} m \left(\frac{z}{\varepsilon^2} \right) \frac{\partial^2 u_n^{\varepsilon,h}}{\partial t^2} = f(|u_n^{\varepsilon,h}|^2) u_n^{\varepsilon,h}, \]

\[u_n^{\varepsilon,h} \rightarrow u_{n+1/2}^{\varepsilon,h} : \]

\[u_{n+1/2}^{\varepsilon,h} := X^\varepsilon(nh, (n+1)h) u_n^{\varepsilon,h}, \]

\[u_{n+1/2}^{\varepsilon,h} \rightarrow u_{n+1}^{\varepsilon,h} : \]

\[u_{n+1}^{\varepsilon,h} := Y(h) u_{n+1/2}^{\varepsilon,h}. \]

\(u_n^{\varepsilon,h} \) is defined by: for every \(z \in [0, 1] \),

\[u_n^{\varepsilon,h}(z) = \sum_{j=0}^{N-1} I_{[(j/h, (j+1)/h)]}(z) (u_j^{\varepsilon,h} + (z/h - [z/h])(u_{j+1}^{\varepsilon,h} - u_j^{\varepsilon,h})), \]

where \(I_A(z) = 1 \) if \(z \in A \) and 0 otherwise.
4.2. Error estimate. The main result of this section is the following.

Theorem 4.1. We assume that $u_0 \in H^2$. There exists an constant C depending only on g and $||u_0||_{H^2}$, such that for every $\varepsilon < 1$, $h \in [0,1]$, and n satisfying $nh \leq 1$:

$$\mathbb{E}[||u^{\varepsilon,h} - u^\varepsilon(h, \cdot)||^2_{L^2}] \leq C(h + \varepsilon^2).$$

Moreover, for every $z \in [0, 1]$:

$$\mathbb{E}[||u^{\varepsilon,h}(z) - u^\varepsilon(z, \cdot)||^2_{L^2}] \leq C(h + \varepsilon^2).$$

Note that in classical simulation situations, the numerical grid step is smaller than the smallest scale, the natural scale of variations of the random coefficient. The proof of this result follows the same lines as the proof of Theorem 3.8 and use strongly the results of Section 3. We also need the two following lemmas.

Lemma 4.2. For every $l \in \mathbb{N}^*$, there exists a constant C_l such that

$$\mathbb{E}
\left[
\sup_{z^l \in [z_0, z]} \left|
\int_{z_0}^{z^l} \frac{1}{\varepsilon} m \left(\frac{z''}{\varepsilon^2}\right) dz''
\right|^{2l}\right] \leq C_l (\varepsilon^{2l} + (z - z_0)^l).$$

Proof. We denote by \mathcal{L} the infinitesimal generator of m. Following the Fredholm alternative, there exists a function $f_1(m)$ such that $\mathcal{L} f_1(m) = m$. Moreover, the process M_{z_0} defined by

$$M_{z_0}(z) = f_1(m(z)) - f_1(m(z_0)) - \int_{z_0}^{z} \mathcal{L} f_1(m(z')) dz'$$

is a martingale with bracket

$$(M_{z_0})(z) = \int_{z_0}^{z} \left(\mathcal{L}(f_1^2)(m(z')) - 2 f_1 \mathcal{L} f_1 (m(z'))\right) dz'.$$

So we have

$$\int_{z_0}^{z^l} \frac{1}{\varepsilon} m \left(\frac{z''}{\varepsilon^2}\right) dz'' = \varepsilon \left(f_1(m(z'/\varepsilon^2)) - f_1(m(z_0/\varepsilon^2))\right) - \varepsilon M_{z_0/\varepsilon^2}(z'/\varepsilon^2).$$

By Burkholder’s inequality and the boundedness of m, there exists C_l such that

$$\mathbb{E}
\left[
\sup_{z^l \in [z_0, z]} \left|
\varepsilon M_{z_0/\varepsilon^2}(z'/\varepsilon^2)\right|^{2l}\right] \leq \varepsilon^{2l} C_l \mathbb{E}[|M_{z_0/\varepsilon^2}(z/\varepsilon^2)|^l] \leq \varepsilon^{2l} C_l \mathbb{E} \left[
\left(\int_{z_0/\varepsilon^2}^{z/\varepsilon^2} \left(\mathcal{L}(f_1^2)(m(z')) - 2 f_1 \mathcal{L} f_1 (m(z'))\right) dz'\right)^l\right]$$

$$\leq \varepsilon^{2l} C_l \left(\frac{\varepsilon}{\varepsilon^2} - \frac{z_0}{\varepsilon^2}\right)^l = C_l (z - z_0)^l$$

(4.5)

Moreover, again by the boundedness of m, and the Doeblin’s condition, there exists C_l' such that

$$\mathbb{E}
\left[
\sup_{z^l \in [z_0, z]} \left|
\varepsilon \left(f_1(m(z'/\varepsilon^2)) - f_1(m(z_0/\varepsilon^2))\right)\right|^{2l}\right] \leq \varepsilon^{2l} C_l'.$$
Using (4.4) and (4.5) we complete the proof. □

Lemma 4.3. Let $u_0 \in H^2$. There exists C depending only on g and $\|u_0\|_{H^2}$ such that for every $h \in (0,1)$ and $n \in \mathbb{N}$ such that $nh \leq 1$,
\[
\|Z_{n}^{\varepsilon,h} Z_{n-1}^{\varepsilon,h} \cdots Z_{1}^{\varepsilon,h} u_0\|_{H^2} \leq C.
\]

Proof. Let $u_0 \in H^2$, $h \in (0,1)$ and $n \in \mathbb{N}$. $X(z_0, z)$ and $Y(z - z_0)$ are unitary in L^2, so, we have
\[
\|Z_{n}^{\varepsilon,h} Z_{n-1}^{\varepsilon,h} \cdots Z_{1}^{\varepsilon,h} u_0\|_{L^2} = \|u_0\|_{L^2},
\]
that is to say $Z_{n}^{\varepsilon,h} Z_{n-1}^{\varepsilon,h} \cdots Z_{1}^{\varepsilon,h}$ is unitary in L^2.

Let $u_1 \in H^1$. We have
\[
\|\partial_t Y(z) u_1\|_{L^2} \leq \|\partial_t u_1\|_{L^2} + \|g'\|_\infty \int_0^z \|\partial_t Y(z') u_1\|_{L^2} dz'.
\]

By Gronwall’s lemma, there exists C depending on g such that for every h:
\[
\|Y(h) u_1\|_{H^1} \leq \|u_1\|_{H^1} \exp(CH).
\]

So, $X(z_0, z)$ being unitary in H^1, we have with the same constant C as previously
\[
\|Z_{n}^{\varepsilon,h} Z_{n-1}^{\varepsilon,h} \cdots Z_{1}^{\varepsilon,h} u_0\|_{H^1} \leq \|u_0\|_{H^1} \exp(Cnh) \leq \|u_0\|_{H^1} \exp(C).
\]

Let $u_1 \in H^2$. We have
\[
\|\partial_t^2 Y(z) u_1\|_{L^2} \leq \|\partial_t^2 u_1\|_{L^2} + \|g'\|_\infty \int_0^z \|\partial_t^2 Y(z') u_1\|_{L^2} dz' + \|g''\|_\infty \int_0^z \|\partial_t Y(z') u_1\|_{L^1}^2 dz'.
\]

Hence, by Gagliardo-Nirenberg’s inequality $\|\cdot\|_{L^2}^2 \leq \|\cdot\|_{L^4} \cdot \|\cdot\|_{H^1}$ and the previous step of the proof, there exists C' depending on g and $\|u_1\|_{H^1}$ such that:
\[
\|Y(z) u_1\|_{H^2} \leq \|u_1\|_{H^2} + C \int_0^z \|Y(z') u_1\|_{H^2} dz'.
\]

So by Gronwall’s lemma and the identity $\|\partial_t^2 X(z_0, z) u_1\|_{L^2} = \|\partial_t^2 u_1\|_{L^2}$, there exists C' depending on g and $\|u_1\|_{H^1}$ such that for every $j \leq n$:
\[
\|Z_{j}^{\varepsilon,h} u_1\|_{H^2} \leq \|u_1\|_{H^2} \exp(C' h).
\]

Moreover, $\|Z_{n}^{\varepsilon,h} Z_{n-1}^{\varepsilon,h} \cdots Z_{1}^{\varepsilon,h} u_0\|_{H^1} \leq \|u_0\|_{H^1} \exp(C)$, so there exists C'' depending on g and $\|u_0\|_{H^1}$ such that
\[
\|Z_{n}^{\varepsilon,h} Z_{n-1}^{\varepsilon,h} \cdots Z_{1}^{\varepsilon,h} u_0\|_{H^2} \leq \|u_0\|_{H^2} \exp(C'' h) \leq \|u_0\|_{H^2} \exp(C'').
\]

The proof is completed. □

Now we prove Theorem 4.1.
We get the first part of Theorem 4.1. For the second part, it is sufficient to show that for every $\epsilon, h \in (0,1)$ we have

$$u_n^{\epsilon,h} - u^\epsilon(nh, \cdot) = Z_n^{\epsilon,h} \cdots Z_n^{\epsilon,h} u_0 - S_n^{\epsilon,h} \cdots S_1^{\epsilon,h} u_0 = \sum_{j=1}^{n} (Z_n^{\epsilon,h} \cdots Z_j^{\epsilon,h} S_j^{\epsilon,h} \cdots S_1^{\epsilon,h} u_0 - Z_n^{\epsilon,h} \cdots Z_j^{\epsilon,h} S_j^{\epsilon,h} \cdots S_1^{\epsilon,h} u_0).$$

We take the L^2-norm. Then, by Lemma 3.9, there exists a constant c_0 such that

$$\|u_n^{\epsilon,h} - u^\epsilon(nh, \cdot)\|_{L^2} \leq \sum_{j=1}^{n} (1 + c_0 h)^{n-j} ||(Z_j^{\epsilon,h} - S_j^{\epsilon,h}) S_{j-1}^{\epsilon,h} \cdots S_1^{\epsilon,h} u_0||_{L^2}.$$

We take the expectation, we use Lemmas 3.11 and 4.2 and the fact that $S^\epsilon(z_0, z)$ is uniformly bounded in H^2. So there exists C such that

$$E[\|u_n^{\epsilon,h} - u^\epsilon(nh, \cdot)\|_{L^2}^2] \leq C n \sum_{j=1}^{n} (1 + c_0 h)^{2(n-j)} (h^3 + \epsilon^2 h^2) \leq C \exp(2c_0)(h + \epsilon^2).$$

We get the first part of Theorem 4.1. For the second part, it is sufficient to show that for every $z \in [nh, (n+1)h)$

$$u^\epsilon(z, \cdot) = X^\epsilon(nh, \cdot) u^\epsilon(nh, \cdot) - u^\epsilon(nh, \cdot)$$

$$+ i \int_{nh}^{z} X^\epsilon(z', z) g(u^\epsilon(z', \cdot)) \, dz'.$$

Now we take the L^2-norm:

$$\|u^\epsilon(z, \cdot) - u^\epsilon(nh, \cdot)\|_{L^2} \leq \|X^\epsilon(nh, \cdot) u^\epsilon(nh, \cdot) - u^\epsilon(nh, \cdot)\|_{L^2}$$

$$+ C(z - nh) ||u_0(\cdot)||_{L^2}.$$

In applying Lemmas 3.10 and 4.2 and $|z - nh| \leq h$ we obtain (4.6). For (4.7), we use Lemmas 4.3 and 3.10. □

By a slight modification of the proof, we can obtain an extension of the previous result. This extension will be used to establish a uniform error estimate.

Lemma 4.4. Let $u_0 \in H^2$. There exists C depending only on g and $||u_0||_{H^2}$ such that for every $\epsilon < 1$, $h \in (0,1]$, and n such that $nh \leq 1$, for every $\gamma > 0$:

$$E[||u_n^{\epsilon,h} - u^\epsilon(z, \cdot)||_{L^2}^4] \leq C(h^2 + \epsilon^4).$$

4.3. Uniform error estimate. Here we establish the following result.

Theorem 4.5. Let $u_0 \in H^2$. There exists C depending only on $||u_0||_{H^2}$ such that for every $\epsilon < 1$, $h \in (0,1]$ and $\gamma > 0$:

$$\mathbb{P} \left[\sup_{z \in [0,1]} ||u_n^{\epsilon,h}(z) - u^\epsilon(z)||_{L^2} > \gamma \right] \leq \frac{C}{\gamma^4}(h + \epsilon^4/h).$$
Proof. We let \(v^{\varepsilon,h}(z,t) := u^{\varepsilon,h}(z,t) - u^{\varepsilon}(z,t) \) for every \(z \) and \(t \). For every \(N > 0 \):

\[
\mathbb{P}\left[\sup_{z \in [0,1]} ||v^{\varepsilon,h}(z)||_{L^2} > \gamma \right] = \mathbb{P}\left[\bigcup_{j=0}^{N-1} \sup_{z \in [j/N,(j+1)/N]} ||v^{\varepsilon,h}(z)||_{L^2} > \gamma \right] \\
\leq \sum_{j=0}^{N-1} \mathbb{P}\left[\sup_{z \in [j/N,(j+1)/N]} ||v^{\varepsilon,h}(z)||_{L^2} > \gamma \right] \\
\leq \sum_{j=0}^{N-1} \mathbb{P}\left[\sup_{z \in [j/N,(j+1)/N]} ||v^{\varepsilon,h}(z) - v^{\varepsilon,h}(\frac{j}{N})||_{L^2} > \frac{\gamma}{2} \right] \\
+ \sum_{j=0}^{N-1} \mathbb{P}\left[||v^{\varepsilon,h}(j/N)||_{L^2} > \frac{\gamma}{2} \right]
\]

By Markov’s inequality and Lemma 4.4, with \(N = 1/h \), we have:

\[
\sum_{j=0}^{N-1} \mathbb{P}\left[||v^{\varepsilon,h}(j/N)||_{L^2} > \frac{\gamma}{2} \right] \leq \frac{C}{\gamma^4}(h + \varepsilon^4/h).
\]

By Lemma 4.6, with \(N = 1/h \), we get:

\[
\sum_{j=0}^{N-1} \mathbb{P}\left[\sup_{z \in [j/N,(j+1)/N]} ||v^{\varepsilon,h}(z) - v^{\varepsilon,h}(\frac{j}{N})||_{L^2} > \frac{\gamma}{2} \right] \leq \frac{C}{\gamma^4}(h + \varepsilon^4/h).
\]

This concludes the proof. □

Lemma 4.6. We let \(v^{\varepsilon,h}(z,t) := u^{\varepsilon,h}(z,t) - u^{\varepsilon}(z,t) \) for \(z \) and \(t \). Let \(u_0 \in H^2 \), \(z \), \(\varepsilon \), and \(h \) in \((0,1] \) and \(\gamma > 0 \) then

\[
\mathbb{P}\left[\sup_{z \in [z',z+h]} ||u^{\varepsilon,h} - u^{\varepsilon,h}(z)||_{L^2} > \frac{\gamma}{2} \right] \leq \frac{C}{\gamma^4}(h^2 + \varepsilon^4)
\]

Proof. We have

\[
\sup_{[z,z+h]} ||u^{\varepsilon,h} - u^{\varepsilon,h}(z)||_{L^2} \leq \sup_{[z,z+h]} ||u^{\varepsilon,h} - u^{\varepsilon,h}(z)||_{L^2} + \sup_{[z,z+h]} ||u^{\varepsilon} - u^{\varepsilon}(z)||_{L^2}.
\]

We begin by dealing with \(\sup_{[z,z+h]} ||u^{\varepsilon,h} - u^{\varepsilon,h}(z)||_{L^2} \). For \(z' \in [0,1] \) we let:

\[
\tilde{u}^{\varepsilon,h}(z') = \sum_{j=0}^{N-1} \sum_{[j/h,(j+1)/h)} (z') u^{\varepsilon,h}_j.
\]

If \(z' \in [h[z/h], h[z/h]+h] \), then \(z' = [z'/h] \) so \(\tilde{u}^{\varepsilon,h}(z') - \tilde{u}^{\varepsilon,h}(z) = 0 \). If \(z' \in [h[z/h], h[z/h]+h] \), then \(z'/h = [z'/h] + 1 \) so

\[
\tilde{u}^{\varepsilon,h}(z') - \tilde{u}^{\varepsilon,h}(z) = u^{\varepsilon,h}_1 + u^{\varepsilon,h}_0.
\]
On the one hand we have
\[||Y(z)X_{\varepsilon^h z/h}^{\varepsilon^h} - X_{\varepsilon^h z/h}^{\varepsilon^h}||_{L^2} \leq \int_0^h ||g(Y(z'))X_{\varepsilon^h z/h}^{\varepsilon^h}||_{L^2} dz'' \leq C h \]
where \(C \) depends on \(g \) and \(u_0 \). On the other hand,
\[||X_{\varepsilon^h z/h}^{\varepsilon^h} - u_{\varepsilon^h z/h}||_{L^2} \leq C \left(\int_{h[z/h]}^{h[z/h]+h} \frac{1}{\varepsilon} m \left(\frac{z''}{\varepsilon^2} \right) dz'' \right) \]
where \(C \) depends on \(g \) and \(u_0 \) by Lemma 4.3. Then we have
\[||\tilde{u}_{\varepsilon^h z/h+1} - \tilde{u}_{\varepsilon^h z/h}||_{L^2} \leq C \left(\int_{h[z/h]}^{h[z/h]+h} \frac{1}{\varepsilon} m \left(\frac{z''}{\varepsilon^2} \right) dz'' + h \right). \]
We take the fourth moment and we apply Lemmas 3.10 and 4.2, and we obtain
\[\mathbb{E} \left[\sup_{z' \in [z, z+h]} ||\tilde{u}_{\varepsilon^h}^{\varepsilon^h}(z') - \tilde{u}_{\varepsilon^h}^{\varepsilon^h}(z)||_{L^2} \right] \leq C(h^2 + \varepsilon^4). \]

It remains to prove
\[\mathbb{E} \left[\sup_{z' \in [z, z+h]} ||\tilde{u}_{\varepsilon^h}^{\varepsilon^h}(z') - u_{\varepsilon^h}^{\varepsilon^h}(z')||_{L^2} \right] \leq C(h^2 + \varepsilon^4), \]

For every \(z' \), we have
\[u_{\varepsilon^h}^{\varepsilon^h}(z') - \tilde{u}_{\varepsilon^h}^{\varepsilon^h}(z') = (z'/h - [z'/h])(u_{\varepsilon^h}^{\varepsilon^h} - u_{\varepsilon^h}^{\varepsilon^h}), \]
hence
\[||\tilde{u}_{\varepsilon^h}^{\varepsilon^h}(z') - u_{\varepsilon^h}^{\varepsilon^h}(z')||_{L^2} \leq C \left(\int_{h[z'/h]}^{h[z'/h]+h} \frac{1}{\varepsilon} m \left(\frac{z''}{\varepsilon^2} \right) dz'' \right), \]
so,
\[\sup_{z' \in [z, z+h]} ||\tilde{u}_{\varepsilon^h}^{\varepsilon^h}(z') - u_{\varepsilon^h}^{\varepsilon^h}(z')||_{L^2} \leq C \left(\int_{h[z/h]}^{h[z/h]+h} \frac{1}{\varepsilon} m \left(\frac{z''}{\varepsilon^2} \right) dz'' \right) + \int_{h[z/h]}^{h[z/h]+2h} \frac{1}{\varepsilon} m \left(\frac{z''}{\varepsilon^2} \right) dz'' + h \right). \]

We get (4.8) in taking the expectation and in applying Lemmas 3.10 and 4.2. It remains to deal with \(\sup_{z' \in [z, z+h]} ||u_{\varepsilon^h}^{\varepsilon^h}(z') - u_{\varepsilon^h}^{\varepsilon^h}(z)||_{L^2} \). Let \(z' \in [z, z+h] \), we have
\[u_{\varepsilon^h}(z') - u_{\varepsilon^h}(z) = X_{\varepsilon^h}(z, z')u_{\varepsilon^h}(z) - u_{\varepsilon^h}(z) + \int_{z}^{z'} X_{\varepsilon^h}(z'', z')g(u_{\varepsilon^h}(z'')) dz'', \]
there exists \(C \) depending on \(g \) and \(u_0 \) such that
\[||u_{\varepsilon^h}(z') - u_{\varepsilon^h}(z)||_{L^2} \leq ||X_{\varepsilon^h}(z, z')u_{\varepsilon^h}(z) - u_{\varepsilon^h}(z)||_{L^2} + \int_{z}^{z'} ||g(u_{\varepsilon^h}(z''))||_{L^2} dz'' \]
\[\leq C \left(h + \left| \int_{z}^{z'} \frac{1}{\varepsilon} m \left(\frac{z''}{\varepsilon^2} \right) dz'' \right| \right). \]
We take the supremum and the fourth moment and we apply Lemmas 3.10 and 4.2. We obtain:

$$
E\left[\sup_{z' \in [z, z + h]} ||u^\varepsilon(z') - u^\varepsilon(z)||^4_{L^2} \right] \leq C(h^2 + \varepsilon^4).
$$

Then we apply Markov’s inequality to complete the proof. □

5. Diffusion-approximation. In this section we deal with the effective pulse propagation. We establish diffusion-approximation results for the exact solution and the numerical solution.

5.1. Diffusion-approximation for the exact solution. We consider the equation:

\begin{equation}
(5.1) \quad u(z, t) = u_0(t) + i\sigma_0 \int_0^z \frac{\partial^2 u}{\partial t^2}(z', t) \circ dW(z') + i \int_0^z f(|u(z', t)|^2) u(z', t) dz',
\end{equation}

where W is a standard Brownian motion and $\sigma_0 > 0$. The mild form of this equation is:

\begin{equation}
(5.2) \quad u(z, t) = X(0, z) u_0(t) + i \int_0^z X(z', z) f(|u(z', t)|^2) u(z', t) dz',
\end{equation}

where $X(z_0, z)$ is a.s. defined by:

$$
X(z_0, z) v_0(t) = \frac{1}{\sqrt{4i\pi \sigma_0 W(z_0, z)}} \int_{-\infty}^{\infty} \exp\left(-\frac{i(t - t')^2}{4\sigma_0 W(z_0, z)}\right) v_0(t') dt',
$$

for $v_0 \in L^2$ and where $W(z_0, z) = W(z) - W(z_0)$. By Ito’s formula, the function $v(z, t) = X(z_0, z) v_0(t)$ is a.s. the unique solution of the linear equation

\begin{equation}
(5.3) \quad v(z, t) = v_0(t) + i\sigma_0 \int_{z_0}^{z} \frac{\partial^2 v}{\partial t^2}(z', t) \circ dW(z').
\end{equation}

Note that we can get the same solution if we use the general framework introduce in Section 2 for each sample paths of W. We can also write the Fourier transform of $X(z_0, z) v_0$ as

$$
X(z_0, z) v_0(\theta) = \tilde{v}_0(\theta) \exp(-i\theta^2 \sigma_0 W(z_0, z)).
$$

So, $X(z_0, z) : L^2 \rightarrow L^2$ is well-defined. Moreover, by Parseval’s theorem, we establish the equality $||X(z_0, z) v_0||_{L^2} = ||v_0||_{L^2}$.

Following Section 2, there exists a unique solution (that we denote by u) in $C([0, 1], L^2)$ to the problem (5.1).

One of the main theorems of this section is the following.

Theorem 5.1. Let $u_0 \in H^2$. If $\sigma_0^2 = 2 \int_0^\infty E[m(0)m(z)] dz$ then u^ε converges in distribution in $C([0, 1], L^2)$ to u.

Proof. We define $M^\varepsilon(z) = \varepsilon \int_0^{z\varepsilon^2} m(z') dz'$ for every $z \in [0, 1]$. By classical diffusion-approximation theorems [12], M^ε converges in the space of continuous functions to $\sigma_0 W$ when $\varepsilon \rightarrow 0$. Hence, by Theorem 3.7, we get the result. □
5.2. Diffusion-approximation for the numerical solution. In this subsection we construct an approximation \(u^h \) for \(u \). As for \(u^{\varepsilon,h} \), we subdivide \([0, 1]\) in \(N \) small steps. We let \(\varepsilon = 1/N \). We define: \(u^h_0(t) := u_0(t) \) (initial condition), and for every \(n \in \{0, \ldots, N - 1\} \):

\[
\begin{align*}
 u^h_n \rightarrow u^h_{n+1} & : \left\{
 \begin{array}{l}
 u^h_{n+1/2} := X(nh, (n + 1)h)u^h_n, \\
 u^h_{n+1} := Y(h)u^h_{n+1/2},
 \end{array}
\right.
\end{align*}
\]

Finally, \(u^h \) is defined as: for every \(z \in [0, 1] \)

\[
 u^h(z) = \sum_{j=0}^{N-1} I_{z \in [j h, (j+1)h]} (u^h_j + (z/h - [z/h])(u^h_{j+1} - u^h_j)).
\]

We establish for the limit process analogous error estimates with Theorem 4.1 and 4.5.

Theorem 5.2. We assume that \(u_0 \in H^2 \). There exists an constant \(C \) depending only on \(g \) and \(||u_0||_{H^2} \), such that for every \(h \in (0, 1) \), and \(n \) satisfying \(nh \leq 1 \):

\[
 \mathbb{E}[||u^h_n - u(nh, \cdot)||_{L^2}^2] \leq C h.
\]

Moreover, for every \(z \in [0, 1] \):

\[
 \mathbb{E}[||u^h(z) - u(z, \cdot)||_{L^2}^2] \leq C h.
\]

Theorem 5.3. Let \(u_0 \in H^2 \). There exists \(C \) such that for every \(h \in (0, 1) \) and \(\gamma > 0 \):

\[
 \mathbb{P}
 \begin{align*}
 \sup_{z \in [0, 1]} ||u^h(z) - u(z)||_{L^2} > \gamma
 \end{align*}
\]

\[
 \leq \frac{C}{\gamma^2} h.
\]

The proofs for these theorems are the same as for Theorems 4.1 and 4.5. The main difference is the substitution of Lemma 4.2 by Lemma 5.4 which follows.

Lemma 5.4. Let \(W \) a Brownian motion. For every \(l \in \mathbb{N}^* \), there exists \(C_l \) such that

\[
 \mathbb{E}
 \begin{align*}
 \left(\sup_{z' \in [z_0, z]} |W(z') - W(z_0)| \right)^{2l}
 \end{align*}
\]

\[
 \leq C_l (z - z_0)^l.
\]

The proof of Lemma 5.4 is a direct consequence of Burkholder’s theorem [10].

We establish the convergence of \(u^{\varepsilon,h} \) to \(u^h \) as \(\varepsilon \) goes to 0.

Theorem 5.5. Let \(u_0 \in L^2 \) and \(N \in \mathbb{N} \). We fix \(h = 1/N \). Then \(u^{\varepsilon,h} \) converges in distribution in \(C([0, 1], L^2) \) to \(u^h \) as \(\varepsilon \rightarrow 0 \).

Proof. We begin the proof by showing that for a fixed \(N \), the sequence \(\{u_0, u_1^h, \ldots, u_N^h\} \) converges in distribution in \((L^2)^{N+1} \) as \(\varepsilon \) goes to 0 to \(\{u_0, u_1^h, \ldots, u_N^h\} \). It is sufficient to show that for every \(n \leq N \) the sequence \(\{M^\varepsilon, u_0, u_1^h, \ldots, u_n^h\} \) converges in distribution in \(C([0, 1], \mathbb{R}) \times (L^2(\mathbb{R}^2))^{2n+1} \) to \(\{\sigma_0 W, u_0^h, u_1^h, \ldots, u_n^h\} \) as \(\varepsilon \rightarrow 0 \), where \(M^\varepsilon(z) = \varepsilon \int_0^{z/\varepsilon} m(z') \, dz' \) for every \(z \in [0, 1] \). We proceed recursively on \(n \).
Let $n = 0$. By diffusion-approximation theorems [12], M^ε converges in distribution in $C([0,1], \mathbb{R})$ to $\sigma_0 W$ as ε goes to 0. u_0 is not random, then (M^ε, u_0) converges in distribution in $C([0,1], \mathbb{R}) \times L^2$ to $(\sigma_0 W, u_0)$.

Now we assume the convergence of $(M^\varepsilon, u_0, u_1^\varepsilon, h, u_1^\varepsilon, \cdots, u_{n-1/2}^\varepsilon, h, u_n^\varepsilon, h)$ and we prove the convergence of $(M^\varepsilon, u_0, u_1^\varepsilon, h, u_1^\varepsilon, \cdots, u_{n+1/2}^\varepsilon, h, u_n^\varepsilon, h)$. The Fourier transform of $u_{n+1/2}^\varepsilon$ is written as

$$u_{n+1/2}^\varepsilon(\theta) = u_{n+1}^\varepsilon \exp(-i\theta^2(M^\varepsilon((n+1)h) - M^\varepsilon(nh))).$$

Let a sequence $((w_k, v_k))$ which converge in $C([0,1], \mathbb{R}) \times L^2$ to a limit (w, v). We have

$$\|v_k \exp(-i\theta^2(w_k((n+1)h) - w_k(nh))) - v \exp(-i\theta^2(w((n+1)h) - w(nh)))\|_{L^2} \leq \|v_k - v\|_{L^2} + \|v - v \exp(-i\theta^2(w((n+1)h) - w(nh)) - w_k((n+1)h) + \varepsilon))\|_{L^2}.$$

The last term of the inequality goes to 0 by the bounded convergence theorem, hence, $u_{n+1/2}^\varepsilon$ is written as a continuous function in $(M^\varepsilon, u_0, u_1^\varepsilon, h, u_1^\varepsilon, \cdots, u_{n-1/2}^\varepsilon, h, u_n^\varepsilon, h)$. So the convergence in distribution of $(M^\varepsilon, u_0, u_1^\varepsilon, h, u_1^\varepsilon, \cdots, u_{n+1/2}^\varepsilon, h, u_n^\varepsilon, h)$ to $(\sigma_0 W, u_0, u_1^\varepsilon, h, \cdots, u_n^\varepsilon, h)$ as ε goes to 0 holds. Now we deal with $(M^\varepsilon, u_0, u_1^\varepsilon, h, u_1^\varepsilon, \cdots, u_{n+1/2}^\varepsilon, h, u_n^\varepsilon, h)$. We have

$$u_{n+1}^\varepsilon = u_{n+1/2}^\varepsilon \exp(ithf(u_{n+1/2}^\varepsilon)) = Y(h)u_{n+1/2}^\varepsilon.$$

By Lemma 3.9 $Y(h)$ is a Lipschitz map from L^2 to L^2. So u_{n+1}^ε can be written as a continuous function of $(M^\varepsilon, u_0, u_1^\varepsilon, h, u_1^\varepsilon, \cdots, u_{n+1/2}^\varepsilon, h, u_n^\varepsilon, h)$, hence the convergence of $(M^\varepsilon, u_0, u_1^\varepsilon, h, u_1^\varepsilon, \cdots, u_{n-1/2}^\varepsilon, h, u_n^\varepsilon, h)$ to $(\sigma_0 W, u_0, u_1^\varepsilon, h, \cdots, u_n^\varepsilon, h)$ as ε goes to 0 holds.

Hence, $(M^\varepsilon, u_0, u_1^\varepsilon, h, u_1^\varepsilon, \cdots, u_{n-1/2}^\varepsilon, h, u_n^\varepsilon, h)$ converges in distribution in $C([0,1], \mathbb{R}) \times (L^2)^{2N+1}$ to $(\sigma_0 W, u_0, u_1^\varepsilon, h, u_1^\varepsilon, \cdots, u_n^\varepsilon, h)$ as $\varepsilon \to 0$. Hence, $(u_0, u_1^\varepsilon, h, \cdots, u_N^\varepsilon, h)$ converges in distribution in $(L^2)^{N+1}$ as ε goes to 0 to $(u_0, u_1^\varepsilon, h, \cdots, u_N^\varepsilon, h)$. To conclude it remains to prove the continuity of the map

$$\Psi : (L^2)^{2N+1} \to C([0,1], L^2)$$

$$(v_0, \cdots, v_N) \mapsto z \mapsto \sum_{j=0}^{N-1} \mathbb{1}_{z \in [j h, (j+1)h)}(v_j + z/h - [z/h])(v_{j+1} - v_j))$$

Let (v_0, \cdots, v_N) and $(\tilde{v}_0, \cdots, \tilde{v}_N)$ in $(L^2)^{N+1}$. If $z \in [j h, (j+1)h]$, then

$$||\Psi(v_0, \cdots, v_N)(z) - \Psi(\tilde{v}_0, \cdots, \tilde{v}_N)(z)||_{L^2} \leq 2||v_j - \tilde{v}_j||_{L^2} + ||v_{j+1} - \tilde{v}_{j+1}||_{L^2}.$$

Hence,

$$\sup_{z \in [0,1]} ||\Psi(v_0, \cdots, v_N)(z) - \Psi(\tilde{v}_0, \cdots, \tilde{v}_N)(z)||_{L^2} \leq 2 \sum_{j=0}^{N-1} ||v_j - \tilde{v}_j||_{L^2} + \sum_{j=0}^{N-1} ||v_{j+1} - \tilde{v}_{j+1}||_{L^2},$$

This concludes the proof. \blacksquare
5.3. Link between diffusion-approximation and splitting scheme. In this subsection we show that the robustness of the splitting scheme allows us to propose a new proof for Theorem 5.1. This can be illustrated by the following commutative diagram:

\[
\begin{array}{c}
u^\varepsilon h \xrightarrow{\varepsilon \to 0} \nu^h \\
\downarrow h \to 0 \quad \downarrow h \to 0 \\
\nu^\varepsilon \xrightarrow{\varepsilon \to 0} \nu
\end{array}
\]

Proof of Theorem 5.1 : By Portmanteau’s theorem [6], we show that for every bounded Lipschitz function \(\Phi : C([0,1], L^2) \to \mathbb{R} \) we have

\[
\lim_{\varepsilon \to 0} E[\Phi(\nu^\varepsilon)] = E[\Phi(\nu)].
\]

We let \(\Delta = |E[\Phi(\nu^\varepsilon)] - E[\Phi(\nu)]| \) and \(|v| := \sup_{z \in [0,1]} |v(z, \cdot)|_{L^2} \) for \(v \in C([0,1], L^2) \).

Let \(M > 0 \) and \(\delta > 0 \). By Markov’s inequality and Theorems 4.5 and 5.3 we have:

\[
0 \leq \Delta \leq |E[\Phi(\nu^\varepsilon) - \Phi(\nu^h)]| + |E[\Phi(\nu^h)] - E[\Phi(\nu^h)]| + |E[\Phi(\nu^h) - \Phi(\nu)]|
\]

\[
\leq |E[\Phi(\nu^h)] - E[\Phi(\nu^h)]| + \sup_{\|x\| \leq M, \|x-x'\| \leq \delta} |\Phi(x) - \Phi(x')| + 2||\Phi||_{\infty} \left(\frac{2E[|u_0|^2]}{M^2} + 2\frac{h + \varepsilon^2 h}{\delta^4} \right).
\]

So by Theorem (5.5), for every \(M, \delta \) and \(h \), we have

\[
\limsup_{\varepsilon \to 0} \Delta \leq 2 \sup_{\|x\| \leq M, \|x-x'\| \leq \delta} |\Phi(x) - \Phi(x')| + 4||\Phi||_{\infty} \left(\frac{E[|u_0|^2]}{M^2} + \frac{h}{\delta^4} \right).
\]

We let \(h \to 0, \delta \to 0 \), and \(M \to \infty \) to complete the proof. \(\square \)

6. Cubic nonlinear Schrödinger equation. In this section we deal with the cubic nonlinear Schrödinger equation which is a more realistic model for pulse propagation in an optical fiber:

\[
(6.1) \quad i \frac{\partial u^\varepsilon}{\partial z} + \frac{1}{\varepsilon} m \left(\frac{z}{\varepsilon^2} \right) \frac{\partial^2 u^\varepsilon}{\partial t^2} + |u^\varepsilon|^2 u^\varepsilon = 0.
\]

We introduce some notations. For every \(M > 0 \), we define the truncation function \(f_M : C^\infty(\mathbb{R}_+, \mathbb{R}_+) \) by \(f_M(x) = x \) if \(x \leq M \), \(f_M(x) = 3M/2 \) if \(x \geq 2M \), \(\|f_M'\|_{\infty} \leq 1 \) and \(\|f_M''\|_{\infty} \leq 1 \). So, the complex function \(g_M : \zeta \mapsto f_M(|\zeta|^2) \zeta \) and all its partial derivatives are Lipschitz. For a fixed \(M \), we introduce:

\[
(6.2) \quad i \frac{\partial u^{\varepsilon,M}}{\partial z} + \frac{1}{\varepsilon} m \left(\frac{z}{\varepsilon^2} \right) \frac{\partial^2 u^{\varepsilon,M}}{\partial t^2} + f_M(|u^{\varepsilon,M}|^2) u^{\varepsilon,M} = 0.
\]

The main result of this section is the following.

Lemma 6.1. Let \(u_0 \in H^2 \). Then, there exist \(Z_0 \) and \(M_0 \) depending only on \(\|u_0\|_H \), such that, almost surely, for every \(\varepsilon, z \in [0, Z_0] \) and \(M > M_0 \), \(u^{\varepsilon,M}(z, \cdot) = u^{\varepsilon,M}(z, \cdot), \|u^{\varepsilon,M}(z, \cdot)\|_\infty \leq M_0 \), and \(u^{\varepsilon,M} \) is the unique solution of (6.1). Before proving Lemma 6.1, we establish a technical lemma.
Lemma 6.2. Let $\phi : [0, 1] \to \mathbb{R}$ a nonnegative continuous function and C a constant such that for every $z \in [0, 1]$:

$$\phi(z) \leq \phi(0) + C \int_0^z \phi(z')^3 \, dz'.$$

Then for every $z \in [0, (2C\phi(0)^2)^{-1})$,

$$\phi(z) \leq \frac{1}{\sqrt{\phi(0)^2 - 2Cz}}.$$

Note that this estimate holds only for finite z but is sufficient in our framework.

Proof. We assume ϕ to be differentiable. We have $\phi'(z)/\phi(z)^3 \leq C$, then

$$\int_0^z \phi'(z')/\phi(z')^3 \, dz' \leq Cz,$$

and for every $z \in [0, (2C\phi(0)^2)^{-1})$,

$$\phi(z) \leq \frac{1}{\sqrt{\phi(0)^2 - 2Cz}}.$$

We extend this result to every continuous functions by density. ☐

Proof of Lemma 6.1: By an explicit computation, we verify $||u^{\varepsilon,M}||_{L^2} = ||u_0||_{L^2}$.

Moreover we have

$$u^{\varepsilon,M}(z, t) = X^{\varepsilon}(0, z)u_0(t) + i \int_0^z X^{\varepsilon}(z', z)g_M(u^{\varepsilon,M}(z', t)) \, dz',$$

so

$$\partial_t u^{\varepsilon,M}(z, t) = X^{\varepsilon}(0, z)\partial_t u_0(t) + i \int_0^z X^{\varepsilon}(z', z)\partial_t u^{\varepsilon,M}(z', t)g_M(u^{\varepsilon,M}(z', t)) \, dz',$$

then

$$||\partial_t u^{\varepsilon,M}(z)||_{L^2} \leq ||\partial_t u_0||_{L^2} + \int_0^z ||\partial_t u^{\varepsilon,M}(z')g_M(u^{\varepsilon,M}(z'))||_{L^2} \, dz'$$

$$\leq ||\partial_t u_0||_{L^2} + C \int_0^z ||\partial_t u^{\varepsilon,M}(z')||_{L^2} ||u^{\varepsilon,M}(z')||_{L^2} \, dz'$$

(C independant of M, only depending on g and u_0)

$$\leq ||\partial_t u_0||_{L^2} + C \int_0^z ||u^{\varepsilon,M}(z')||_{H^1}^2 ||\partial_t u^{\varepsilon,M}(z')||_{L^2} \, dz'$$

(Sobolev’s inequality)

hence

$$||u^{\varepsilon,M}(z)||_{H^1} \leq ||u_0||_{H^1} + C \int_0^z ||u^{\varepsilon,M}(z')||_{H^1}^3 \, dz'.$$

Following Lemma 6.2, for every $z \in [0, (2C||u_0||_{H^1}^2)^{-1})$,

$$||u^{\varepsilon,M}(z)||_{H^1} \leq \frac{1}{\sqrt{||u_0||_{H^1}^2 - 2Cz}}.$$
This upper bound only depends on M. We choose $Z_0 < (2C||u_0||_{L^2})^{-1}$. For every $z \leq Z_0$, we have

$$||u^{\varepsilon,M} (z)||^2_{H^1} \leq K_0 := (||u_0||_{H^1}^2 - 2CZ_0)^{-1}.$$

By Sobolev’s embedding $H^1 \subset L^\infty$

$$||u^{\varepsilon,M} (z)||^2_{L^\infty} \leq M_0 := C_{sob}K_0.$$

As $f_M(x) = x$ for every $x \leq M$, the solution $u^{\varepsilon,M}$ of (6.2) depends only on M and is also solution of (6.1). This concludes the proof by uniqueness of the solution. □

An important consequence of Lemma 6.2 is the extension of result for (4.1) to (6.1). We define as solution of (6.1) with initial condition $u_0 \in H^2$ the solution which is defined in 6.2 for a sufficiently great M. Note that the same procedure can be used to define the solution of the equation:

$$(6.3) \quad u(z,t) = u_0(t) + ia_0 \int_0^z \frac{\partial^2 u}{\partial t^2}(z',t) \circ dW(z') + i \int_0^z |u(z',t)|^2 u(z',t) dz'. $$

Moreover, the error estimate for the pseudo-spectral split-step scheme and the diffusion-approximation theorem can be establish.

THEOREM 6.3. Let $u_0 \in H^2$, u^ε (resp. u^ε) the solution of (6.1) (resp. (6.3)) defined as previously on $[0,Z_0]$ where Z_0 is defined in Lemma 6.2, $(u^{\varepsilon,h})_h$ be the pseudo-spectral split-step scheme for u^ε defined as in Section 2. Then:

(i) there exists C depending only on M_0 defined in Lemma 6.2 such that for every $\varepsilon < 1$, $h \in (0,1]$, and n satisfying $nh \leq Z_0$:

$$E[||u^{\varepsilon,h}(nh,\cdot)||^2_{L^2}] \leq C(h + \varepsilon^2).$$

(ii) If $\sigma_0^2 = 2 \int_0^\infty E[m(0)m(z)] dz$, then, u^ε converges in distribution in $C([0,Z_0], L^2)$ to u.

7. Optimal error estimate for numerical scheme. We consider in this section the pseudo-spectral split-step scheme for Equation (5.1) for the effective pulse propagation in an optical fiber. In previous sections, we have shown by operator-theoretical proofs that the splitting method is an approximation of the exact solution at least of order 1 in h. In this section we use a formal approach to the computation of the error. So it seems that the splitting method is in fact an approximation of order 2, that is to say:

$$(7.1) \quad E[||u^\varepsilon_h - u(nh,\cdot)||^2_{L^2}] \leq C h^2.$$

It would be ideal to present a rigorous proof of this estimate at a mathematical level as the one presented previously. However the situation turns out to be tricky because we use Taylor’s developments which follow very fastidious calculations. We shall check in Section 8 by numerical simulations.

We recall and introduce some notations. We consider:

$$(7.2) \quad u(z,t) = u_0(t) + i\sigma_0 \int_{z_0}^z \frac{\partial^2 u}{\partial t^2}(z',t) \circ dW(z') + i \int_{z_0}^z f(|u(z',t)|^2) u(z',t) dz',$$

$$(7.3) \quad v(z,t) = u_0(t) + i\sigma_0 \int_{z_0}^z \frac{\partial^2 v}{\partial t^2}(z',t) \circ dW(z'),$$

$$(7.4) \quad w(z,t) = u_0(t) + i \int_{z_0}^z f(|w(z',t)|^2) w(z',t) dz'.$$
We denote respectively by \(S(z_0, z)\), \(X(z_0, z)\) and \(Y(z-z_0)\) the flows associated to (7.2), (7.3) and (7.4) with initial conditions on \(z_0\) and we let \(Z(z_0, z) := Y(z-z_0)X(z_0, z)\), \(S^h_n := S((n-1)h, nh)\), \(Z^h_n := Z((n-1)h, nh)\), \(S^h_{i-n} := S^h_n \cdots S^h_i\) and \(Z^h_{i-n} := Z^h_n \cdots Z^h_i\), if \(l < n\). Here the bracket \(\langle \cdot, \cdot \rangle\) (resp. \(\langle \cdot, \cdot \rangle_{L^2}\)) stands for the scalar product in \(\mathbb{R}^2\) (resp. \(L^2\)).

We begin by the computation of local error. Note that the notation \(O\) is formal.

We have

\[
S(z_0, z)u_0 = X(z_0, z)u_0 + i \int_{z_0}^{z} X(z', z)g(S(z_0, z')u_0) \, dz',
\]

and

\[
g(S(z_0, z')u_0) = g(u_0) + \langle (X(z_0, z')u_0 - u_0) \cdot g'(u_0) \rangle + O(z' - z_0)
\]

then

\[
S(z_0, z)u_0 = X(z_0, z)u_0 + i(z - z_0)g(u_0)
+ i \int_{z_0}^{z} \langle (X(z_0, z')u_0 - u_0) \cdot g'(u_0) \rangle \, dz' + O((z - z_0)^2).
\]

In the same way we get

\[
Z(z_0, z)u_0 = X(z_0, z)u_0 + i(z - z_0)g(u_0)
+ i(z - z_0)\langle (X(z_0, z)u_0 - u_0) \cdot g'(u_0) \rangle + O((z - z_0)^2),
\]

so

\[
(7.5) \quad S(z_0, z)u_0 - Z(z_0, z)u_0 = F(u_0)D(z_0, z) + O((z - z_0)^2)
\]

where \(D(z_0, z) = \int_{z_0}^{z} D(z', z) \, dz'\) with \(D(z_1, z_2) = \sigma_0(W(z_2) - W(z_1))\), and \(F(u_0) = \langle (\partial^2 u_0/\partial t^2) \cdot g(u_0) \rangle - (\partial^2 g(u_0)/\partial t^2)\).

Now we deal with global error. We have

\[
u^h_N - u(1, \cdot) = Z^h_n \cdots Z^h_1 u_0 - S^h_N \cdots S^h_1 u_0
= \sum_{j=1}^{N} \{Z^h_n \cdots Z^h_j S^h_{j-1} \cdots S^h_1 u_0 - Z^h_n \cdots Z^h_{j+1} S^h_j \cdots S^h_1 u_0\}.
\]

Taking \(L^2\)-norm:

\[
||u^h_N - u(1, \cdot)||^2_{L^2} \leq A + B
\]

where

\[
A = \sum_{j=1}^{N} ||Z^h_n \cdots Z^h_j S^h_{j-1} \cdots S^h_1 u_0 - Z^h_n \cdots Z^h_{j+1} S^h_j \cdots S^h_1 u_0||^2_{L^2}
\]

and

\[
B = \sum_{j,k=1,j \neq k}^{N} \langle Z^h_{j-n} S^h_{j-1} u_0 - Z^h_{j+1-n} S^h_{j-1} u_0, Z^h_{k-n} S^h_{k-1} u_0 - Z^h_{k+1-n} S^h_{k-1} u_0 \rangle_{L^2}.
\]
where $S_{i_0}^{h_0}$ (resp. $Z_{i_0}^{h_0}$) denote $S_1^h \cdots S_n^h$ (resp. $Z_1^h \cdots Z_n^h$). As in the proof of Theorem 4.1 we get $E[A] \leq Ch^2$. Now we want to prove a similar inequality for B.

We first consider the rough approximation $Z_n^h \approx 1$. Letting $D_n^h := D((j - 1)h, jh)$ and using (7.5) we have

$$ E[B] \approx \left(\sum_{j,k=1,j<k}^N + \sum_{j,k=1,j>k}^N \right) E \left[D_n^h D_k^h \langle F(S_{1\rightarrow j-1}^h u_0), F(S_{1\rightarrow k-1}^h u_0) \rangle_{L^2} \right]. $$

So, by independence of the increments of the Brownian motion, if $j > k$ we can write

$$ E[D_n^h] E \left[D_k^h \langle F(S_{1\rightarrow j-1}^h u_0), F(S_{1\rightarrow k-1}^h u_0) \rangle_{L^2} \right], $$

but $E[D_n^h] = 0$, then, in a first approximation, $E[B] \approx 0$.

Now we consider a more precise development for Z_n^h. If we let $D_n^h := D((n - 1)h, nh)$, then we have $Z_n^h u_0 \approx u_0 + i D_n^h \partial^2 u_0 / \partial z^2$, so

$$ Z_{j-n}^h u_0 \approx u_0 + \sum_{i=j}^n D_n^h \partial^2 u_0 / \partial z^2. $$

Then, by calculations as previously and the fact that W is centered and with independent increments, we get $E[B] \approx 0$.

We conclude this section by the conjecture: there exist a constant C only depending on g and u_0 such that

$$ E[||u_n^h - u(nh, \cdot)||_{L^2}^2] \leq Ch^2. $$

8. Numerical simulations. In this section we solve

$$ i \frac{\partial u^\varepsilon}{\partial z} + \frac{1}{\varepsilon} m \left(\frac{z}{\varepsilon} \right) \frac{\partial^2 u^\varepsilon}{\partial t^2} + 2 |u^\varepsilon|^2 u^\varepsilon = 0. $$

We implement the splitting scheme introduced in this paper. The aim of this section is to estimate by numerical methods the error between the numerical solution and the exact solution.

First we simulate the random dispersion coefficient. In previous sections we have assumed that m is a bounded and Markov process, in fact to simplify presentation of the proofs. All of what precedes can be done in a greater generality. The most important is that m has rapidly decaying correlations. For instance it can be assumed that m is mixing [11]. For a covariance function r, we define the dispersion process m by: $m(z) = \int_{-\infty}^{+\infty} \exp(-iz\zeta) \sqrt{\tilde{r}(\zeta)} W(d\zeta)$, where \tilde{r} is the Fourier transform of r and W is a Gaussian measure. Then m is a Gaussian process which is centered, stationary and its covariance function is r. Figure 8.1a give a realization of m when $r(z) = \exp(-z^2/2)$. Note that such a process is nor bounded, neither a Markov process, but mixing.

To simulate the exact solution u^ε of (8.1) we use the splitting method introduced in this paper. The linear problem

$$ i \frac{\partial v^\varepsilon}{\partial z} + \frac{1}{\varepsilon} m \left(\frac{z}{\varepsilon^2} \right) \frac{\partial^2 v^\varepsilon}{\partial t^2} = 0 $$

(8.2)
with initial condition \(v_0 \) is solved explicitly in the Fourier domain. The nonlinear problem:

\[
\frac{i}{\partial z} w^\varepsilon + |w^\varepsilon|^2 w^\varepsilon = 0
\]

is solved explicitly by exponentiation. We choose a soliton-type initial condition:

\[
u_0(t) = \frac{1}{\cosh(t)}.
\]

Figure 8.1b give the input intensity profile and the output profile for a numerical experiment.

Now we simulate the error \(E[|u_{1/h}^\varepsilon - u^\varepsilon(1,\cdot)|^2_{L^2}] \) at \(z = 1 \) with respect to \(h \). Figures (8.2a) and (8.2b) give the error \(E[|u_{1/h}^\varepsilon - u^\varepsilon(1,\cdot)|^2_{L^2}] \) at \(z = 1 \) with \(\varepsilon = 0.05 \) and \(\varepsilon = 0.01 \).

Note that these simulations are in good agreement with formal theoretical result of the previous section: the error is proportional to \(h^2 \).

Acknowledgements. I thank Josselin Garnier for very helpful suggestions on this work.

REFERENCES