Random growth models with possible extinction

Régine Marchand, joint work with Olivier Garet and Jean-Baptiste Gouéré.

SPA 2015, Oxford.

Institut Elie Cartan, Université de Lorraine, Nancy, France.

Random growth models

Random growth models: cells, crystals, epidemics...

Question

Description the asymptotic behaviour of the growth model ?

■ Eden's model

[Eden 61]

In \mathbb{Z}^2 , start from a single occupied site. At each step, choose a site uniformly among empty neighbours of occupied sites, and fill it.

Richarson's model

■ First-passage percolation

[Richardson 73]

Continuous time analogue for Eden's model.

[Hammersley-Welsh 65]

Random perturbation of the graph distance on \mathbb{Z}^d .

Random growth models with possible extinction:

to allow sites to swap back and forth between two states:

Oriented percolation

[Durrett 84]

Contact process

[Harris 1974]

Continuous time analogue for oriented percolation.

Random growth models with possible extinction

- 1 Oriented percolation and open paths
- 2 Convergence results for the number of open paths
- 3 Shape theorems for oriented percolation
- 4 Back to the number of open paths

Oriented percolation in dimension d+1

The oriented graph $\mathbb{Z}^d \times \mathbb{N}$.

Each vertex has 2d + 1 children:

Randomness.

Each edge is independently kept with probability $p \in (0,1)$.

 \mathbb{P}_p : corresponding probability measure.

Oriented percolation: pictures

Figure: Examples with p = 0.7, 0.6, 0.5, 0.4.

Oriented percolation in dimension d+1

Phase transition:

Does there exist infinite open paths? $\Omega_{\infty} = \{(0,0) \to \infty\}$

$$\mathbb{P}_{m{p}}(\Omega_{\infty}) > 0 \quad \Leftrightarrow \quad m{p} > \overrightarrow{p_c}(d+1).$$

Typical questions:

 \blacksquare Where are typically the extremities of open paths with length n?

$$\xi_n = \{x \in \mathbb{Z}^d : (0,0) \to (x,n)\}.$$

- \rightsquigarrow Shape Theorem for the set ξ_n .
- **2** At time n, to what extent ξ_n depend on the initial configuration ? \rightsquigarrow Shape Theorem for the coupled zone.
- \blacksquare How many open paths with length n can we expect ?

Problem: counting open paths in oriented percolation

Figure: n = 3, p = 0.6.

$$N_{x,n}$$
: number of open paths from $(0,0)$ to (x,n)

$$N_n = \sum_{x,n} N_{x,n}$$
:

number of open paths from (0,0) to level n.

$$(N_{x,n})_{x,n} = \begin{pmatrix} 0 & 1 & 3 & 1 & 4 & 1 & 0 \\ 0 & 1 & 1 & 2 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \end{pmatrix} \quad \text{and} \quad (N_n)_n = \begin{pmatrix} 10 \\ 6 \\ 2 \\ 1 \end{pmatrix}$$

Question

Asymptotic behaviour of N_n ?

Counting open paths: mean behaviour and martingale

■ Mean behaviour: $\mathbb{E}_p(N_n) = (2d+1)^n p^n$;

$$\frac{1}{n}\log \mathbb{E}_p(N_n) = \log((2d+1)p).$$

$$\exists W \geq 0 \quad \lim_{n \to +\infty} \frac{N_n}{((2d+1)p)^n} = W \quad \mathbb{P}_p - a.s.$$

• on the event $\{W > 0\}$: $\lim_{n \to +\infty} \frac{1}{n} \log N_n = \log((2d+1)p)$.

On $\{W>0\}$, $(N_n)_n$ has the same exponential growth rate as $(\mathbb{E}_p(N_n))_n$.

Question

When does $\{W > 0\}$ occur? And what if W = 0?

[Think about the Kesten-Stigum theorem for the Galton-Watson process 66]

Counting open paths: Mean behaviour and martingale

On the event
$$\{W > 0\}$$
: $\lim_{n \to +\infty} \frac{1}{n} \log N_n = \log((2d+1)p)$.

• it is possible that $\mathbb{P}_p(\Omega_\infty) > 0$ and $\mathbb{P}_p(W = 0) = 1$:

[dimension 1 and 2: Yoshida 08]

- it is possible that, on the percolation event,

 - $\overline{\lim}_{n\to+\infty} \frac{1}{n} \log N_n < \log((2d+1)p)$ for some p's, $\overline{\lim}_{n\to+\infty} \frac{1}{n} \log N_n = \log((2d+1)p)$ for some p's.

[Spread out percolation and dimension large enough: Lacoin 12]

Question

a.s. asymptotic behaviour of $\frac{1}{n} \log N_n$ on the percolation event?

Conditional probability: $\overline{\mathbb{P}}_p(.) = \mathbb{P}_p(.|\Omega_{\infty}).$

Counting open paths: supermultiplicativity property

 $a, b, c \in \mathbb{Z}^d \times \mathbb{N}$ such that $a \to b \to c$:

$$\begin{aligned} & \textit{N}_{a,c} \geq \textit{N}_{a,b}\textit{N}_{b,c} \\ & (-\log\textit{N}_{a,c}) \leq (-\log\textit{N}_{a,b}) + (-\log\textit{N}_{b,c}). \end{aligned}$$

- subadditivity
- stationarity : $N_{b,c}$ has the same law as $N_{0,c-b}$
- independence: $N_{b,c}$ is independent from $N_{a,b}$ $\left(\frac{1}{n}\log N_n\right)$ should converge.

[Kingman 68,73; Hammersley 74...] No: $\log N_{a,b}$ can be infinite, and thus is not integrable...

Convergence is proved for ρ -percolation

[Comets-Popov-Vachkovskaia 08] [Kesten-Sidoravicius 10]

Summary

Counting open paths with length n in oriented percolation:

- Mean behaviour: $\mathbb{E}_p(N_n) = (2d+1)^n p^n$.
- $(-\log N_{a,c}) \leq (-\log N_{a,b}) + (-\log N_{b,c}):$

$$\left(\frac{1}{n}\log N_n\right)_n$$
 should converge.

■ Because of possible extinction, infinite quantities appear.

Question: How do we prove convergence results in this context ?

Random growth models with possible extinction

- 1 Oriented percolation and open paths
- 2 Convergence results for the number of open paths
- 3 Shape theorems for oriented percolation
- 4 Back to the number of open paths

Global convergence result

Behaviour in mean:

$$\frac{1}{n}\log \mathbb{E}_p(N_n) = \log((2d+1)p).$$

Almost-sure convergence on Ω_{∞} :

Theorem (Garet–Gouéré–Marchand)

$$\lim_{n\to+\infty} \frac{1}{n} \log N_n = \tilde{\alpha}_p(0) \quad \overline{\mathbb{P}}_p - a.s.$$

Figure: Representation of $\frac{1}{n} \log N_n$, as a function of n. Values: $n_{\text{max}} = 300$ and p = 0.7, 0.43. Black line: $\log((2d+1)p)$.

Directional convergence result

Theorem (Garet–Gouéré–Marchand 15)

There exists a concave function $\tilde{\alpha}_p$ such that, for "every" set A

$$\lim_{n\to+\infty} \frac{1}{n} \log N_{nA,n} = \sup_{x\in A} \tilde{\alpha}_p(x) \quad \overline{\mathbb{P}}_p - a.s.$$

Figure: n = 100, p = 0.6. Color of pixel (x, k) proportional to $\frac{1}{k} \log N_{x,k}$.

Directional convergence result: p slightly supercritical

Figure: n = 300, p = 0.45.

Interpretation as a special case of polymers

Random walk with length *n*: a path at random among paths

$$\mathbb{P}_n(\gamma) = \frac{1}{(2d+1)^n}$$

Polymer in random potential ω : a path at random among open paths

$$\mathbb{P}_{n,\omega}(\gamma) = rac{\mathbf{1}_{\gamma ext{ open in }\omega}}{N_n(\omega)}.$$

 $N_n(\omega)$: quenched partition function

Quenched polymer measure

$$\mathbb{P}_{n,\omega}(\gamma) = rac{\mathbf{1}_{\gamma ext{ open in }\omega}}{N_n(\omega)}.$$

- Global convergence $\to \omega$ -a.s. existence of the quenched free energy: $\lim_{n \to +\infty} \frac{1}{n} \log N_n(\omega) = \tilde{\alpha}_p(0).$
- $lue{}$ Directional convergence ightarrow LDP for the quenched polymer measure:

$$\lim_{n \to +\infty} \frac{1}{n} \log \mathbb{P}_{n,\omega}(\gamma_n \in nA) = \lim_{n \to +\infty} \frac{1}{n} \log \frac{N_{nA,n}(\omega)}{N_n(\omega)}$$
$$= -\inf_{x \in A} (\tilde{\alpha}_p(0) - \tilde{\alpha}_p(x)).$$

Open questions

- Is it true that $\forall x \setminus \{0_{\mathbb{R}^d}\}$ $\tilde{\alpha}_p(x) < \tilde{\alpha}_p(0)$?
- Is $\tilde{\alpha}_p$ strictly concave ?
- Is $\tilde{\alpha}_p$ continuous in p?
- quenched free energy=annealed free energy ?

Extension to Linear Stochastic Equation (LSE)

Counting all paths : Deterministic linear recurrence equations.

$$N_{x,k+1} = \sum_{y \sim x} N_{y,k}$$

"Pascal's triangle"

$$(x, k+1)$$

 $(x-1, k) (x, k) (x+1, k)$

Counting open paths: Linear stochastic recurrence equations.

$$N_{x,k+1} = \sum_{y \sim x} a_{y,x}^k N_{y,k}$$

$$(x, k+1)$$

$$(x-1,k) \quad (x+1,k)$$

$$(x+1,k)$$

"Pascal's triangle" with iid Bernoulli defects.

■ General Linear Stochastic Equations : [Yoshida 08]

$$N_{x,k+1} = \sum_{y \sim x} a_{y,x}^k N_{y,k}$$
 iid non-negative coefficients

Application : Existence of the quenched free energy for polymer in random potential with values in $\mathbb{R}_+ \cup \{+\infty\}$.

[Garet-Gouéré-Marchand 15]

Convergence results for the number of open paths

Our global convergence result

Theorem

$$\lim_{n\to+\infty} \frac{1}{n} \log N_n = \tilde{\alpha}_p(0) \quad \overline{\mathbb{P}}_p - a.s.$$

relies on the tools we built for proving shape theorems in oriented percolation...

Random growth models with possible extinction

- 1 Oriented percolation and open paths
- 2 Convergence results for the number of open paths
- 3 Shape theorems for oriented percolation
- 4 Back to the number of open paths

Oriented percolation on $\mathbb{Z}^d \times \mathbb{N}$ with $p > \overrightarrow{p_c}(d+1)$

Figure: Percolation cone, dimension 1+1.

- $\xi_n = \{x \in \mathbb{Z}^d : (0,0) \to (x,n)\}.$
- Hitting time : $t(x) = \inf\{n \ge 0 : x \in \xi_n\}.$
- Already visited sites: $H_n = \{x \in \mathbb{Z}^d : t(x) \le n\}.$ $(H_n)_n$: non-decreasing sequence of random sets.

Theorem (Shape theorem)

There exists a norm μ_p on \mathbb{R}^d (unit ball: A_{μ_p}), such that

$$\overline{\mathbb{P}}_{p}\left(\exists N>0 \quad \forall n\geq N \quad (1-\varepsilon)A_{\mu_{p}}\subset \frac{H_{n}+[0,1]^{d}}{n}\subset (1+\varepsilon)A_{\mu_{p}}\right)=1.$$

[Durrett-Griffeath 82, Bezuidenhout-Grimmett 90, Durrett 91, Garet-Marchand 12]

General strategy for proving a shape theorem:

- Find a quantity s(x) characterizing the growth in a direction x with Subadditivity + Stationarity + Integrability.
- Subadditive ergodic theorem [Kingman 68,73; Hammersley 74; Liggett 85] to obtain directional limits:

$$\mu(x) = \lim_{n \to +\infty} \frac{s(nx)}{n} = \inf_{n \ge 1} \frac{\mathbb{E}s(nx)}{n}.$$

■ Prove the convergence is uniform in $\frac{x}{\|x\|}$.

Examples: [Eden 61]

- First-passage percolation: [Richardson 73; Cox–Durrett 81, Boivin 90]
- Brownian motion in random potential: [Sznitmann 94, Mourrat 12]
- "Moving particles": [Alves-Machado-Popov 02, Kesten-Sidoravicius 05,08]

Specific difficulty here: extinction is possible.

Conditioning on non-extinction can for instance destroy independence.

Looking for the good quantity

We work with $\overline{\mathbb{P}}_p(.) = \mathbb{P}_p(.|\Omega_{\infty})$.

We're looking for s(x) with : Subadditivity + Stationarity + Integrability.

1
$$t(x) = \inf\{n, (0,0) \to (x,n)\}$$
: no.

$$\tilde{t}(x) = \inf\{n, (0,0) \to (x,n) \to +\infty\}$$
: no.

- **3** We build $\sigma(x)$, a **regenerating time**:
 - $(0,0) \to (x,\sigma(x)) \to +\infty;$
 - $\blacksquare \overline{\mathbb{P}}_p$ is invariant under $\widetilde{\theta}_x = T_x \circ \theta_{\sigma(x)}$;
 - Under $\overline{\mathbb{P}}_p$, $\sigma(x) \circ \tilde{\theta}_x$ et $\sigma(x)$ are i.id. and integrable;
 - \bullet σ is (almost) subadditive:

$$\sigma((n+p)x) \leq \sigma(nx) + \sigma(px) \circ \tilde{\theta}_{nx} + r_x(n,p).$$

- lacksquare σ and t are close.
- \rightsquigarrow Shape theorem for σ ;
- \rightsquigarrow Shape theorem for t.

Shape theorem for the coupled zone

Question.

Markov chain:
$$\begin{cases} \xi_0 \subset \mathbb{Z}^d, \\ \xi_n = \{x \in \mathbb{Z}^d : \exists x_0 \in \xi_0 : (x_0, 0) \to (x, n)\}. \end{cases}$$
 How does ξ_n depend on the initial configuration ξ_0 ?

Coupled zone. K_n^0 is the set of points whose state at time n is the same whether $\xi_0 = \{0\}$ or $\xi_0 = \mathbb{Z}^d$. It is the region where the initial condition is forgotten.

If $x \in K_n^0$, and $\exists y$ such that $(y,0) \to (x,n)$, then $(0,0) \to (x,n)$.

Theorem (Shape theorem for the coupled zone)

$$\overline{\mathbb{P}}_p\left(\exists N \ \forall n \geq N \quad (1-\varepsilon)A_{\mu_p} \subset \frac{(H_n \cap K_n^0) + [0,1]^d}{n} \subset (1+\varepsilon)A_{\mu_p}\right) = 1.$$

Summary: Shape theorem for oriented percolation

Oriented percolation is a typical growth model with possible extinction.

We replaced the hitting time t(x) with a regenerating time $\sigma(x)$: [similar idea in Kucek 89]

- good invariance and ergodicity properties;
- an extra error term.

We can then apply (almost) subadditive ergodic theorems, and follow the classical road.

Applications:

[Garet, Gouéré, Marchand, Théret]

- Shape theorem for contact process in random environment,
- Large deviations inequalities for contact process in random environment,
- Continuity of the shape with respect to the infection parameter,
- Number of open paths.

Open questions

Prove that $p \mapsto \mu_p$ is strictly decreasing.

Random growth models with possible extinction

- 1 Oriented percolation and open paths
- 2 Convergence results for the number of open paths
- 3 Shape theorems for oriented percolation
- 4 Back to the number of open paths

Global convergence result

 $N_{x,n}$: number of open paths from (0,0) to (x,n) $N_n = \sum_{x \in \mathbb{Z}^d} N_{x,n}$: number of open paths from (0,0) to level n.

Figure: n = 3, p = 0.6.

Theorem (Garet–Gouéré–Marchand)

$$\lim_{n\to+\infty} \frac{1}{n} \log N_n = \tilde{\alpha}_p(0) \quad \overline{\mathbb{P}}_p - a.s.$$

Strategy:

- Use some regenerating times, apply subadditive ergodic theorems and obtain directional limits along random subsequences of times.
- Use the coupled zone of oriented percolation to come back to full convergence.

1. Directional limits along sequences of regenerating times

Fix $(y, h) \in \mathbb{Z}^d \times \mathbb{N}^*$. Regenerating time s(y, h), translation $\hat{\theta}$:

$$(0,0) \to (y,s(y,h)) \to \infty;$$

$$\blacksquare \overline{\mathbb{P}}_p$$
 is invariant under $\hat{\theta}$;

•
$$(s(y,h) \circ (\hat{\theta}^j)_{j\geq 0})$$
 are iid integrable.

Iteration: sequence of regenerating times

$$S_n = \sum_{k=0}^{n-1} s(y,h) \circ \hat{\theta}^k \sim n \overline{\mathbb{E}}_p(s(y,h)).$$

$$N_{(ny,S_n)}.N_{(py,S_p)}\circ \hat{\theta}^n \leq N_{((n+p)y,S_{n+p})}.$$

■
$$0 \le \log N_{(ny,S_n)} \le S_n \log(2d+1)$$
.

Subadditive ergodic theorem applied to $f_n = -\log N_{(ny,S_n)}$:

$$\exists \alpha_p(y,h) > 0 \quad \lim_{n \to +\infty} \frac{1}{S_n(y,h)} \log N_{(ny,S_n)} = \alpha_p(y,h) \quad \overline{\mathbb{P}}_p - a.s.$$

2. From directional limits to global convergence

Directional limits:
$$\lim_{n \to +\infty} \frac{1}{S_n(y,h)} \log N_{(ny,S_n)} = \alpha_p(y,h)$$
.
Maximal contribution: $\alpha_p = \sup \{\alpha_p(y,h) : (y,h) \in \mathbb{Z}^d \times \mathbb{N}^*\}$.

- It is sufficient to work with $\overline{N_n}$: open paths that are the beginning of infinite paths.
 - Advantage: $\overline{N_n}$ is non-decreasing.
- 2 Easy part: $\lim_{n \to +\infty} \frac{1}{n} \log \overline{N_n} \ge \alpha_p$. $\longrightarrow \overline{N_n}$ is non-decreasing + renewal theory.
- - \rightsquigarrow Use the coupled zone.

2bis. Use of the coupled zone

Idea: With the coupled zone, compare numbers of paths coming to close points.

The black path contributes to $\overline{N}_{(x,n)}$:

- M, backwards in time.
- Looking backwards from *M*:

$$x \in K$$
 and $z \to x$: so $M \to x$!

So
$$\overline{N}_{(x,n)} \leq \overline{N}_{M}$$
.

Approximation with *D* directions:

 \rightsquigarrow level *n* covered with *D* coupled zones:

$$\overline{N}_n \leq \sum_{\bullet} \overline{N}_{\bullet}.$$

$$\rightsquigarrow \overline{\lim}_{n \to +\infty} \frac{1}{n} \log \overline{N_n} \le \alpha_p.$$

Conclusion

Random growth model with extinction:

By constructing a good regenerating time, we can rely on the classical (almost) subadditive ergodic machinery.

- For oriented percolation/contact process,
 - Shape theorems;
 - Large deviations inequalities;
 - Continuity of the asymptotic shape with respect to the percolation parameter;
 - Asymptotics for the number of open paths in any direction...
- 2 Shape theorem for variations of the contact process [Deshayes 15]
 - Two stage contact process; [Krone 99]
 - Boundary modified contact process; [Durrett-Schinazi 00]
 - Contact process in randomly evolving contact process; [Broman 07...]
 - Contact process with aging [Deshayes 14]

Thank you for your attention!