Absolute continuous approximations for multifractional processes and fields

Kostiantyn Ralchenko

Kiev National Taras Shevchenko University

21 October 2010
1 Preliminaries
 - Fractional Brownian motion
 - Multifractional Brownian motion
 - Fractional Besov type spaces

2 Approximation of mBm by absolutely continuous processes

3 Pathwise SDEs with mBm
 - Existence and uniqueness
 - Approximation

4 Multiparameter mBm
 - Preliminaries
 - Main result
 - Fractional Brownian sheet
 - Multifractional Brownian sheet
1 Preliminaries
 - Fractional Brownian motion
 - Multifractional Brownian motion
 - Fractional Besov type spaces

2 Approximation of mBm by absolutely continuous processes

3 Pathwise SDEs with mBm
 - Existence and uniqueness
 - Approximation

4 Multiparameter mBm
 - Preliminaries
 - Main result
 - Fractional Brownian sheet
 - Multifractional Brownian sheet
Let \((\Omega, \mathcal{F}, P)\) be a complete probability space.

Definition

The fractional Brownian motion (fBm) with Hurst index \(H \in (0, 1)\) is a centered Gaussian process \(B^H = \{B^H_t, t \geq 0\}\) with stationary increments and the covariance function

\[
EB^H_t B^H_s = \frac{1}{2}(t^{2H} + s^{2H} - |t - s|^{2H}).
\]
Let \((\Omega, \mathcal{F}, P)\) be a complete probability space.

Definition

The fractional Brownian motion (fBm) with Hurst index \(H \in (0, 1)\) is a centered Gaussian process \(B^H = \{B^H_t, t \geq 0\}\) with stationary increments and the covariance function

\[
\mathbb{E}B^H_t B^H_s = \frac{1}{2}(t^{2H} + s^{2H} - |t - s|^{2H}).
\]

Remark

Since \(\mathbb{E}(B^H_t - B^H_s)^2 = |t - s|^{2H}\) and \(B^H\) is a Gaussian process, it has a continuous modification, according to the Kolmogorov theorem.
Let $H: [0, +\infty) \rightarrow \left(\frac{1}{2}, 1\right)$ be a function which satisfies Hölder condition: there exist $C_1 > 0$ and $\gamma > \frac{1}{2}$ such that for all $t_1, t_2 \in [0, +\infty)$

$$|H_{t_1} - H_{t_2}| \leq C_1 |t_1 - t_2|^\gamma.$$

Let $H_{\text{min}} := \min \left\{ \gamma, \min_{t \in [0, T]} H_t \right\}$.
Moving average mBm: \(Y_t = B^H_t \), where

\[
B^H_t = \frac{1}{\Gamma(H + \frac{1}{2})} \left\{ \int_{-\infty}^{0} \left[(t-s)^{H-\frac{1}{2}} - (-s)^{H-\frac{1}{2}} \right] dW_s \right. \\
+ \left. \int_{0}^{t} (t-s)^{H-\frac{1}{2}} dW_s \right\},
\]
• Moving average mBm: \(Y_t = B_t^H \), where

\[
B_t^H = \frac{1}{\Gamma \left(H + \frac{1}{2} \right)} \left\{ \int_{-\infty}^{0} \left[(t - s)^{H - \frac{1}{2}} - (-s)^{H - \frac{1}{2}} \right] dW_s \right. \\
+ \int_{0}^{t} (t - s)^{H - \frac{1}{2}} dW_s \right\},
\]

• Volterra-type mBm: \(Y_t = B_t^H \), where

\[
B_t^H = \int_{0}^{t} K_H(t, s) \, dW_s, \quad t \geq 0,
\]

\[
K_H(t, s) = C_H s^{\frac{1}{2} - H} \int_{s}^{t} (v - s)^{H - \frac{3}{2}} v^{H - \frac{1}{2}} \, dv,
\]

\[
C_H = \left(\frac{H(2H - 1)}{B(2 - 2H, H - \frac{1}{2})} \right)^{\frac{1}{2}}.
\]
Harmonizable mBm

Let $W(\cdot)$ be a complex-valued random measure on \mathbb{R} such that

1) for all $A, B \in \mathcal{B}(\mathbb{R})$

$$EW(A)W(B) = \lambda(A \cap B),$$

where λ is Lebesgue measure,

2) for any sequence $\{A_1, A_2, \ldots\} \subset \mathcal{B}(\mathbb{R})$ such that $A_i \cap A_j = \emptyset$, $i \neq j$, $\{W(A_i), i \geq 1\}$ are centered and normal,

$$W\left(\bigcup_{i \geq 1} A_i\right) = \sum_{i \geq 1} W(A_i),$$

3) for all $A \in \mathcal{B}(\mathbb{R})$ $W(A) = \overline{W(-A)}$,

4) for all $\theta \in \mathbb{R}$

$$\{e^{i\theta} W(A), A \in \mathcal{B}(\mathbb{R})\} \overset{d}{=} \{W(A), A \in \mathcal{B}(\mathbb{R})\}.$$

Harmonizable mBm is defined as $Y_t = B_t^H$ where

$$B_t^H = \int_{\mathbb{R}} \frac{e^{itx} - 1}{|x|^{\frac{1}{2}+H}} W(dx).$$
We consider generalizations of fBm of the form $Y_t = B_t^{H_t}$, where
\(\left\{ B_t^H, t \in [0, T], H \in \left(\frac{1}{2}, 1 \right) \right\} \) is a set of random variables such that

(i) for each $H \in \left(\frac{1}{2}, 1 \right)$ \(\left\{ B_t^H, t \in [0, T] \right\} \) is fBm with Hurst parameter H;

(ii) for all $t \in [0, T]$, $H_1, H_2 \in \left(\frac{1}{2}, 1 \right)$

\[
\mathbb{E} \left(B_t^{H_1} - B_t^{H_2} \right)^2 \leq C_2 (H_1 - H_2)^2.
\]
We consider generalizations of fBm of the form $Y_t = B^H_t$, where
\[\{B^H_t, t \in [0, T], H \in \left(\frac{1}{2}, 1\right)\} \]
is a set of random variables such that

(i) for each $H \in \left(\frac{1}{2}, 1\right)$ \[\{B^H_t, t \in [0, T]\} \]
is fBm with Hurst parameter H;

(ii) for all $t \in [0, T]$, $H_1, H_2 \in \left(\frac{1}{2}, 1\right)$

\[E \left(B^{H_1}_t - B^{H_2}_t \right)^2 \leq C_2 (H_1 - H_2)^2. \]

Remark

The process $Y_t = B^H_t$ has a continuous modification, according to the Kolmogorov theorem.
Let for \(0 < \beta < 1\)

\[
\varphi_f^\beta(t) := |f(t)| + \int_0^t \frac{|f(t) - f(s)|}{(t - s)^{1+\beta}} ds,
\]

and \(W_0^\beta = W_0^\beta[0, T]\) be the space of measurable functions \(f: [0, T] \rightarrow \mathbb{R}\) with

\[
\|f\|_{0,\beta} := \sup_{t \in [0, T]} \varphi_f^\beta(t) < \infty.
\]
Let for $0 < \beta < 1$

$$\varphi_f^\beta(t) := |f(t)| + \int_0^t \frac{|f(t) - f(s)|}{(t - s)^{1+\beta}} \, ds,$$

and $W_0^\beta = W_0^\beta[0, T]$ be the space of measurable functions $f : [0, T] \to \mathbb{R}$ with

$$\|f\|_{0,\beta} := \sup_{t \in [0, T]} \varphi_f^\beta(t) < \infty.$$

Also let $W_1^\beta = W_1^\beta[0, T]$ be the space of functions $f : [0, T] \to \mathbb{R}$ with

$$\|f\|_{1,\beta} := \sup_{0 \leq s < t \leq T} \left(\frac{|f(t) - f(s)|}{(t - s)^\beta} + \int_s^t \frac{|f(u) - f(s)|}{(u - s)^{1+\beta}} \, du \right) < \infty.$$
1 Preliminaries
 • Fractional Brownian motion
 • Multifractional Brownian motion
 • Fractional Besov type spaces

2 Approximation of mBm by absolutely continuous processes

3 Pathwise SDEs with mBm
 • Existence and uniqueness
 • Approximation

4 Multiparameter mBm
 • Preliminaries
 • Main result
 • Fractional Brownian sheet
 • Multifractional Brownian sheet
Let us consider such an approximation:

\[
B_{t}^{H_{t},\varepsilon} := \frac{1}{\phi_{t}(\varepsilon)} \int_{t}^{t+\phi_{t}(\varepsilon)} B_{s}^{H_{s}} \, ds = \frac{1}{\phi_{t}(\varepsilon)} \int_{0}^{\phi_{t}(\varepsilon)} B_{u+t}^{H_{u+t}} \, du,
\]
Let us consider such an approximation:

\[B_{t}^{H_{t},\varepsilon} := \frac{1}{\phi_{t}(\varepsilon)} \int_{t}^{t+\phi_{t}(\varepsilon)} B_{s}^{H_{s}} \, ds = \frac{1}{\phi_{t}(\varepsilon)} \int_{0}^{B_{u+t}} B_{u+t}^{H_{u+t}} \, du, \]

where \(\phi_{t}(\varepsilon) = \phi(t, \varepsilon): [0, T] \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+} \) is a set of measurable functions such that

1. \(\sup_{t \in [0, T]} \phi_{t}(\varepsilon) \rightarrow 0, \varepsilon \rightarrow 0^{+}; \)
2. for all \(t, s \in [0, T] \) and for all \(\varepsilon > 0 \)

\[\left| \frac{\phi_{s}(\varepsilon) - \phi_{t}(\varepsilon)}{\phi_{s}(\varepsilon)} \right| \leq C_{3} |t - s|^{H_{\min}}, \quad (1) \]

\(C_{3} \) is a constant which does not depend on \(\varepsilon. \)
Let us consider such an approximation:

\[
B_{t}^{H_{t},\varepsilon} := \frac{1}{\phi_{t}(\varepsilon)} \int_{t}^{t+\phi_{t}(\varepsilon)} B_{s}^{H} \, ds = \frac{1}{\phi_{t}(\varepsilon)} \int_{0}^{\phi_{t}(\varepsilon)} B_{u+t}^{H_{u+t}} \, du,
\]

where \(\phi_{t}(\varepsilon) = \phi(t, \varepsilon): [0, T] \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}\) is a set of measurable functions such that

1. \(\sup_{t \in [0, T]} \phi_{t}(\varepsilon) \to 0, \varepsilon \to 0^{+}\);
2. for all \(t, s \in [0, T]\) and for all \(\varepsilon > 0\)

\[
\left| \frac{\phi_{s}(\varepsilon) - \phi_{t}(\varepsilon)}{\phi_{s}(\varepsilon)} \right| \leq C_{3} |t - s|^{H_{\text{min}}}.
\]

(1)

\(C_{3}\) is a constant which does not depend on \(\varepsilon\).

For example, one can consider functions of the form \(\phi_{t}(\varepsilon) = \psi(t)\varepsilon\), where \(\psi(t)\) satisfies the following conditions:

1. \(\psi(t) > c > 0\),
2. \(|\psi(t) - \psi(s)| \leq C |t - s|^{H_{\text{min}}}\).
Theorem

For any $\beta \in (0, H_{\text{min}})$ one has the convergence in Besov space W^{β}_1

$$\left\| B^{H, \varepsilon} - B^H \right\|_{1, \beta} \xrightarrow{\mathbb{P}} 0, \quad \varepsilon \to 0^+.$$
Corollary

Let \(\left\{ B^H_t, t \in [0, T] \right\} \) be fBm with Hurst parameter \(H \in \left(\frac{1}{2}, 1 \right) \), functions \(\phi_t(\varepsilon) \) satisfy conditions:

1) \(\sup_{t \in [0, T]} \phi_t(\varepsilon) \to 0, \varepsilon \to 0^+; \)

2) for all \(t, s \in [0, T] \) and for all \(\varepsilon > 0 \)

\[
\left| \frac{\phi_s(\varepsilon) - \phi_t(\varepsilon)}{\phi_s(\varepsilon)} \right| \leq C_3 |t - s|^H.
\]

Then for approximations

\[
B^H_t,\varepsilon = \frac{1}{\phi_t(\varepsilon)} \int_t^{t + \phi_t(\varepsilon)} B^H_s \, ds
\]

one has the convergence

\[
\left\| B^{H,\varepsilon} - B^H \right\|_{1,\beta} \xrightarrow{P} 0, \quad \varepsilon \to 0^+.
\]
1 Preliminaries
 - Fractional Brownian motion
 - Multifractional Brownian motion
 - Fractional Besov type spaces

2 Approximation of mBm by absolutely continuous processes

3 Pathwise SDEs with mBm
 - Existence and uniqueness
 - Approximation

4 Multiparameter mBm
 - Preliminaries
 - Main result
 - Fractional Brownian sheet
 - Multifractional Brownian sheet
Consider the SDE with mBm:

$$X_t = X_0 + \int_0^t b(s, X_s) \, ds + \int_0^t \sigma(s, X_s) \, dB^H_s, \quad t \in [0, T].$$

The stochastic integral here is understood in the pathwise sense.
Consider the SDE with mBm:

\[X_t = X_0 + \int_0^t b(s, X_s) \, ds + \int_0^t \sigma(s, X_s) \, dB^H_s, \quad t \in [0, T]. \]

The stochastic integral here is understood in the pathwise sense. We construct approximations for the solution of this equation as solutions of

\[X_t^\varepsilon = X_0 + \int_0^t b(s, X_s^\varepsilon) \, ds + \int_0^t \sigma(s, X_s^\varepsilon) \, dB^{H_s, \varepsilon}_s, \quad t \in [0, T]. \]
I. $\sigma(t, x)$ is differentiable in x, and there exist some constants $1 - H_{\min} < \kappa \leq 1$ and $\frac{1}{H_{\min}} - 1 < \delta \leq 1$, and for every $N > 0$ there exists $M_N > 0$ such that the following properties hold:

(i) $\forall x \in \mathbb{R}, \forall t \in [0, T]$

$$|\sigma(t, x) - \sigma(t, y)| \leq M_0 |x - y|;$$

(ii) $\forall|x|, |y| \leq N, \forall t \in [0, T]$

$$\left| \frac{\partial}{\partial x} \sigma(t, x) - \frac{\partial}{\partial x} \sigma(t, y) \right| \leq M_N |x - y|^{\delta};$$

(iii) $\forall x \in \mathbb{R}, \forall t, s \in [0, T]$

$$|\sigma(t, x) - \sigma(s, x)| + \left| \frac{\partial}{\partial x} \sigma(t, x) - \frac{\partial}{\partial x} \sigma(s, x) \right| \leq M_0 |t - s|^{\kappa}.$$
II. There exists $b_0 \in L^\rho(0, T)$, where $\rho \geq 2$, and for every $N > 0$ there exists $L_N > 0$ such that the following properties hold:

(iv) $\forall |x|, |y| \leq N, \forall t \in [0, T]$

$$|b(t, x) - b(t, y)| \leq L_N |x - y|;$$

(v) $\forall x \in \mathbb{R}, \forall t \in [0, T]$

$$|b(t, x)| \leq L_0 |x| + b_0(t).$$
Let
\[\alpha_0 = \min \left\{ \frac{1}{2}, \kappa, \frac{\delta}{1 + \delta} \right\}. \]

Theorem

Suppose that \(\alpha \in (1 - H_{\min}, \alpha_0) \), \(X_0 \) is a random variable, the coefficients \(\sigma(t, x) \) and \(b(t, x) \) satisfy assumptions (i)–(v) with \(\rho \geq 1/\alpha \). Then there exists a unique solution \(\{X_t, t \in [0, T]\} \) of the equation

\[X_t = X_0 + \int_0^t b(s, X_s) \, ds + \int_0^t \sigma(s, X_s) \, dB^H_s, \quad t \in [0, T], \]

\(X \in L^0(\Omega, \mathcal{F}, P, W^\alpha_{0}[0, T]), \) with trajectories from \(C^{1-\alpha}[0, T] \) a.s.
Theorem

Suppose that $\alpha \in (1 - H_{\text{min}}, \alpha_0)$, X_0 is a random variable, the coefficients $\sigma(t, x)$ and $b(t, x)$ satisfy assumptions (i)–(v) with $\rho \geq 1/\alpha$. Then one has the uniform convergence in probability

$$\sup_{t \in [0, T]} |X_t - X^\varepsilon_t| \xrightarrow{P} 0, \quad \varepsilon \to 0^+.$$
1 Preliminaries
- Fractional Brownian motion
- Multifractional Brownian motion
- Fractional Besov type spaces

2 Approximation of mBm by absolutely continuous processes

3 Pathwise SDEs with mBm
- Existence and uniqueness
- Approximation

4 Multiparameter mBm
- Preliminaries
- Main result
- Fractional Brownian sheet
- Multifractional Brownian sheet
Let $T = (T_1, T_2) \in (0, \infty)^2$, $[0, T] = [0, T_1] \times [0, T_2]$.
Let $s, t \in [0, T]$, $s = (s_1, s_2)$, $t = (t_1, t_2)$, $f : [0, T] \to \mathbb{R}$.

$$\Delta_s f(t) := f(s_1, s_2) - f(s_1, t_2) - f(t_1, s_2) + f(t_1, t_2)$$
$$f_{t-}(s) := f(s_1, s_2) - f(s_1, t_2-) - f(t_1-, s_2) + f(t_1-, t_2-)$$

$$s < t \iff \begin{cases} s_1 < t_1 \\ s_2 < t_2 \end{cases}$$

$$s \leq t \iff \begin{cases} s_1 \leq t_1 \\ s_2 \leq t_2 \end{cases}$$
Let $W^{\beta_1,\beta_2}_1 = W^{\beta_1,\beta_2}_1([0, T])$ be a space of measurable functions $f: [0, T] \rightarrow \mathbb{R}$ with

$$
\|f\|_{1,\beta_1,\beta_2} = \sup_{0 \leq s < t \leq T} \left(\frac{\left| \Delta_s f(t) \right|}{(t_1 - s_1)^{\beta_1}(t_2 - s_2)^{\beta_2}} \right)
+ \frac{1}{(t_2 - s_2)^{\beta_2}} \int_{s_1}^{t_1} \frac{\left| f_t(u, s_2) - f_t(s) \right|}{(u - s_1)^{1+\beta_1}} \, du
+ \frac{1}{(t_1 - s_1)^{\beta_1}} \int_{s_2}^{t_2} \frac{\left| f_t(s_1, v) - f_t(s) \right|}{(v - s_2)^{1+\beta_2}} \, dv
+ \int_{[s,t]} \frac{\left| \Delta_s f(r) \right|}{(r_1 - s_1)^{1+\beta_1}(r_2 - s_2)^{1+\beta_2}} \, dr \right) < \infty,
$$
Let \(\{B_t, t \in [0, T]\} \) be a random field which satisfy the following conditions

1) \(B_t \) is Gaussian field;
2) there exists constants \(C > 0 \) and \(\lambda > 1 \) such that for all \(s, t \in [0, T] \)
 \[
 \mathbb{E}(\Delta_s B_t)^2 \leq C(|t_1 - s_1||t_2 - s_2|)^\lambda
 \]
3) the trajectories of \(B_t \) are continuous with probability one.
We consider the following approximation for B_t:

$$B_t^\varepsilon = \frac{1}{\varepsilon^2} \int_{t_1}^{t_1+\varepsilon} \int_{t_2}^{t_2+\varepsilon} B_s \, ds = \frac{1}{\varepsilon^2} \int_{[0,\varepsilon]^2} B_{s+t} \, ds.$$

Theorem

For all $\beta_1, \beta_2 \in (0, \lambda/2)$

$$\|B^\varepsilon - B\|_{1, \beta_1, \beta_2} \xrightarrow{P} 0, \quad \varepsilon \to 0 +.$$

Definition

A random field \(\{ B_t^H, t \in \mathbb{R}_+^2 \} \) is called a fractional Brownian field with
Hurst index \(H = (H_1, H_2) \in (0, 1)^2 \), if

1) \(B_t^H \) is a Gaussian field such that \(B_t^H = 0, \ t \in \partial \mathbb{R}_+^2 \),

2) \(\mathbb{E}B_t^H = 0, \ \mathbb{E}B_t^HB_s^H = \frac{1}{4} \prod_{i=1,2} \left(t_i^{2H_i} + s_i^{2H_i} - |t_i - s_i|^{2H_i} \right) \),
Definition

A random field \(\{ B^H_t, t \in \mathbb{R}^2_+ \} \) is called a fractional Brownian field with Hurst index \(H = (H_1, H_2) \in (0, 1)^2 \), if

1) \(B^H_t \) is a Gaussian field such that \(B^H_t = 0, \ t \in \partial \mathbb{R}^2_+ \),

2) \(E B^H_t = 0, \ E B^H_t B^H_s = \frac{1}{4} \prod_{i=1,2} \left(t_i^{2H_i} + s_i^{2H_i} - |t_i - s_i|^{2H_i} \right) \).

The increments of fBf satisfy the following equality

\[
E \left(\Delta_s B^H_t \right)^2 = |t_1 - s_1|^{2H_1} |t_2 - s_2|^{2H_2}.
\]
Corollary

For $\beta_1, \beta_2 \in (0, H_1 \wedge H_2)$ the following convergence holds:

$$\left\| B^{H,\varepsilon} - B^H \right\|_{1, \beta_1, \beta_2} \xrightarrow{P} 0, \quad \varepsilon \to 0^+,$$

where

$$B^H_{t,\varepsilon} = \frac{1}{\varepsilon^2} \int_{t_1}^{t_1 + \varepsilon} \int_{t_2}^{t_2 + \varepsilon} B^H_s \, ds.$$
Let $H(t) = (H_1(t), H_2(t)) : [0, T] \rightarrow (1/2, 1)^2$ be a continuous function such that

$$\frac{1}{2} < \mu < \min_{t \in [0, T]} H_i(t) \leq \max_{t \in [0, T]} H_i(t) < \nu < 1.$$

Suppose that for all $t, s \in [0, T]$

(H1) $|H_i(t) - H_i(s)| \leq c_1 (|t_1 - s_1|^\nu + |t_2 - s_2|^\nu)$,

(H2) $|\Delta_s H_i(t)| \leq c_2 (|t_1 - s_1||t_2 - s_2|)^\nu$.

Let $H(t) = (H_1(t), H_2(t)) : [0, T] \rightarrow (1/2, 1)^2$ be a continuous function such that
\[
\frac{1}{2} < \mu < \min_{t \in [0, T]} H_i(t) \leq \max_{t \in [0, T]} H_i(t) < \nu < 1.
\]

Suppose that for all $t, s \in [0, T]$

(H1) $|H_i(t) - H_i(s)| \leq c_1 (|t_1 - s_1|^{\nu} + |t_2 - s_2|^{\nu})$,

(H2) $|\Delta s H_i(t)| \leq c_2 (|t_1 - s_1| |t_2 - s_2|)^{\nu}$.

Definition ([Meerschaert, Wu, and Xiao (2008)])

Multifractional Brownian sheet with Hurst index $H(t)$ is defined as follows

\[
B_t^{H(t)} := \int_{\mathbb{R}^2} \prod_{i=1,2} \left[(t_i - u_i)^{H_i(t) - 1/2} - (-u_i)^{H_i(t) - 1/2} \right] dW_u, \quad t \in [0, T],
\]

where $s_+ = \max\{s, 0\}$, $W = \{W_s, s \in \mathbb{R}^2\}$ is a Wiener field.
Theorem

$B^H_t(t)$ has a continuous modification.
Theorem

$B_t^{H(t)}$ has a continuous modification.

Theorem

There exists $C > 0$ such that for all $s, t \in [0, T]$

$$\mathbb{E}(\Delta_s Y_t)^2 \leq C(|t_1 - s_1| |t_2 - s_2|)^{2\mu}.$$
Theorem

For any $\beta_1, \beta_2 \in (0, \mu)$ one has the convergence in Besov space $W^{1, \beta_1, \beta_2}_{1, \beta_1, \beta_2}$

$$
\left\| B_t^{H(t), \epsilon} - B_t^{H(t)} \right\|_{1, \beta_1, \beta_2} \xrightarrow{P} 0, \quad \epsilon \to 0+,
$$

where

$$
B_t^{H(t), \epsilon} = \frac{1}{\epsilon^2} \int_{t_1}^{t_1+\epsilon} \int_{t_2}^{t_2+\epsilon} B_s^{H(s)} \, ds.
$$
T.O. Androshchuk.
Approximation of a stochastic integral with respect to fractional Brownian motion by integrals with respect to absolutely continuous processes.

A. Benassi, S. Jaffard, and D. Roux.
Gaussian processes and pseudodifferential elliptic operators.

B. Boufoussi, M. Dozzi, and R. Marty.
Local time and Tanaka formula for a Volterra-type multifractional Gaussian process.
2009.

M. Meerschaert, D. Wu, and Y. Xiao.
Local times of multifractional Brownian sheets.
D. Nualart and A. Răşcanu.
Differential equations driven by fractional Brownian motion.

R. F. Peltier and J. Lévy Véhel.
Multifractional Brownian motion: definition and preliminary results.
INRIA research report, (2645), 1995.

K. V. Ralchenko.
Absolute continuous approximations for multifractional Brownian motion.

K. V. Ralchenko and G. M. Shevchenko.
Path properties of the multifractional Brownian motion.