Chaos synchronization for a class of discrete dynamical systems on the N-dimensional torus

Lionel Rosiera,*, Gilles Millériouxb, Gérard Blochb

aUniversité Henri Poincaré - Nancy 1, Institut Elie Cartan, BP 239, 54506 Vandoeuvre-lès-Nancy Cedex, France
bUniversité Henri Poincaré - Nancy 1, Centre de Recherche en Automatique de Nancy (CRAN), ESSTIN, 2 rue Jean Lamour, 54519 Vandoeuvre-lès-Nancy Cedex, France

Received 4 May 2004; received in revised form 18 June 2005; accepted 20 July 2005
Available online 18 October 2005

Abstract

In this paper, a class of dynamical systems on \mathbb{T}^N (the N-dimensional torus) is investigated. It is proved that any dynamical system in this class is chaotic in the sense of Devaney, and that the sequences produced are equidistributed for almost every initial data. The above results are then extended to switched affine transformations of \mathbb{T}^N. Next, a chaos-synchronization mechanism is introduced and used for masking information in a communication setup.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Chaotic dynamical system; Switched systems; N-torus; Ergodicity; Chaos synchronization; Cryptography

1. Introduction

Chaos synchronization has exhibited an increasing interest in the last decade since the pioneering works reported in [18,19]. Thereafter, it has entered the control scene and has become a very popular issue in control theory [4]. From a control theory point of view, the synchronization issue can be formulated as a state reconstruction problem. We refer the reader to [17] for a first survey of chaos synchronization techniques based on an observer approach.

Chaos synchronization has also proved to be a very common feature in physical and engineering systems, and it has been advocated as a powerful tool in secure communication [25–27,8,3]. Chaotic systems are indeed characterized by a great sensitivity to the initial conditions and a spreading out of the trajectories, two properties which are very close to the Shannon requirements of confusion and diffusion [11].

There are basically two approaches when using chaotic dynamical systems for secure communications purposes. The first one amounts to numerically computing a great number of iterations of a discrete chaotic system, in using e.g. the message as initial data (see [24] and the references therein). The second one amounts to hiding a message in a chaotic dynamics. Only a part of the state vector (the “output”) is conveyed through the public channel. Next, a synchronization mechanism is designed to retrieve the message at the receiver part.

In both approaches, the first difficulty is to “build” a chaotic system appropriate for encryption purposes. In this context, the corresponding chaotic signals must have no patterning, a broad-band power spectrum and an auto-correlation function that quickly drops to zero. In [20], a mean for synthesizing volume-preserving or volume-expanding maps fulfilling the above properties is provided. For such systems, there are several directions of expansion (stretching), while the discrete trajectories are folded back into a confined region of the phase space. Expansion can be carried out by unstable linear mappings with at least one positive Lyapunov exponent.
Folding can be carried out with modulo functions through shift operations, or with triangular, trigonometric functions through reflexion operations. Fully stretching piecewise affine Markov maps have also attracted interest because such maps are expanding in all directions and they have uniform invariant probability densities (see [23,6]).

Nevertheless, we observe that the word “chaotic” has not the same meaning everywhere, and that the chaotic behavior of a system is often demonstrated only by numerical evidences. The first aim of the paper is to provide a rigorous analysis of the chaotic behavior of a large class of dynamical systems on \mathbb{T}^N (the N-dimensional torus), based on the definition given by Devaney [5]. Some connections with classical stability theory are pointed out in the paper.

For ease of implementation and duplication, a cryptographic scheme must involve a map for which the parameters identification is expected to be a difficult task, while computational requirements for masking and unmasking the information are not too heavy. The second aim of this paper is to provide a rigorous analysis of the chaotic behavior of a large class of affine transformations on the \mathbb{R}^N-torus. For ease of implementation and duplication, a cryptographic scheme must involve a map for which the parameters identification is expected to be a difficult task, while computational requirements for masking and unmasking the information are not too heavy. The second aim of this paper is to provide a rigorous analysis of the chaotic behavior of a large class of affine transformations on the \mathbb{R}^N-torus. For ease of implementation and duplication, a cryptographic scheme must involve a map for which the parameters identification is expected to be a difficult task, while computational requirements for masking and unmasking the information are not too heavy. The second aim of this paper is to provide a rigorous analysis of the chaotic behavior of a large class of affine transformations on the \mathbb{R}^N-torus.

Let us now describe the content of the paper. Section 2 is devoted to the mathematical analysis of the chaotic properties of the following discrete dynamical system

$$x_{k+1} = Ax_k + b \pmod{1},$$

where $A \in \mathbb{Z}^{N \times N}$, $b \in \mathbb{R}^N$, and (mod 1) means that we keep the residue of $Ax_k + b$ modulo 1 (that is, the integral part of each coordinate of $Ax_k + b$ is removed). Most of the examples encountered in the literature are given only for $N = 1$ and $|A| \geq 2$, or for $N = 2$ and det $A = 1$ (see e.g., [7]). We give here a necessary and sufficient condition for (1) to be chaotic in the sense of Devaney for any $N \geq 1$, and we investigate the equiperiodization of the trajectories of (1). The above results are then extended in Section 3 to a class of switched dynamical systems on \mathbb{T}^N. These systems allow to generate more complicated dynamics with only a few low dimension matrices. A masking/unmasking technique based on a dynamical embedding is proposed in Section 4. The way of extracting the masked information is provided through an observer-based synchronization mechanism with a finite-time stabilization property, an issue of first importance from a practical point of view. Certain results of the paper have been announced in [22].

2. A class of chaotic dynamical systems on the \mathbb{R}-torus

2.1. Chaotic dynamical system

Let (M, d) denote a compact metric space, and let $f : M \to M$ be a continuous map. The following definition of a chaotic system is due to Devaney [5].

Definition 1. The discrete dynamical system

$$(\Sigma) \quad x_{k+1} = f(x_k)$$

is said to be chaotic if the following conditions are fulfilled:

- (C1) (Sensitive dependence on initial conditions) There exists a number $\epsilon > 0$ such that for any $x_0 \in M$ and any $\delta > 0$, there exists a point $y_0 \in M$ with $d(x_0, y_0) < \delta$ and an integer $k \geq 0$ such that $d(x_k, y_k) \geq \epsilon$;

- (C2) (One-sided topological transitivity) There exists some $x_0 \in M$ with $(x_0)_k, k \geq 0$ dense in M;

- (C3) (Density of periodic points) The set $D = \{x_0 \in M; \exists k > 0, x_k = x_0\}$ is dense in M.

Recall [30, Theorem 5.9; 29, Theorem 1.2.2] that if f is onto (i.e., $f(M) = M$), the one-sided topological transitivity is equivalent to the condition:

- (C2') For any pair of nonempty open sets U, V in M, there exists an integer $k \geq 0$ such that $f^{-k}(U) \cap V \neq \emptyset$ (\iff $U \cap f^{k}(V) \neq \emptyset$).

In this paper, we consider the case where M is the N-torus $\mathbb{T}^N = \mathbb{R}^N/\mathbb{Z}^N$ (quotient group). For any $X = (X_1, \ldots, X_N) \in \mathbb{R}^N \simeq \mathbb{R}^N \times 1$, the class of X in \mathbb{T}^N (namely the coset $X + \mathbb{Z}^N$) is denoted by $x = \overline{X}$. Let $\pi : \mathbb{R}^N \to \mathbb{T}^N$ be the natural projection, for which $\pi(X) = x = \overline{X}$. The distance between two points $\overline{X}, \overline{Y}$ is defined as

$$d(\overline{X}, \overline{Y}) = \inf_{Z \in \mathbb{Z}^N} [X - Y + Z].$$

For any matrix $C \in \mathbb{Z}^{P \times N}$ ($P, N \geq 1$) and for any $X \in \mathbb{R}^N$, the class of X in \mathbb{T}^P, clearly depends only on \overline{X}, will be denoted by $C\overline{X}$. Thus, we may associate to any matrix $A \in \mathbb{Z}^{N \times N}$ and to any $b \in \mathbb{T}^N$ a discrete dynamical system $(\Sigma_{A,b})$ on \mathbb{T}^N defined by

$$(\Sigma_{A,b}) x_{k+1} = f(x_k) := Ax_k + b, \quad x_0 \in \mathbb{T}^N.$$
Notice that (ii) reduces to “A has no roots of unity as eigenvalues” when \(b = 0 \). Indeed, it may be seen that \((A - I)T^N\) is dense in \(T^N \) if and only if \((A - I)\) is invertible.

The first result in this paper provides a necessary and sufficient condition for \(\Sigma_{A,0} \) to be chaotic.

Theorem 1. Let \(A \in \mathbb{Z}^{N \times N} \). Then \((\Sigma_{A,0})\) is chaotic if, and only if, \(\det A \neq 0 \) and \(A \) has no roots of unity as eigenvalues.

Proof. Assume first that \((\Sigma_{A,0})\) is chaotic. We first claim that \(A \) is nonsingular. Indeed, if \(\det A = 0 \), then the map \(f \) is not onto \([30, \text{Theorem 0.15}]\), i.e., \(A \mathcal{T} \neq \mathcal{T}^N \). As \(A \mathcal{T} \) is compact (hence equal to its closure), it is not dense in \(\mathcal{T}^N \), hence we cannot find any state \(x_0 \in \mathcal{T}^N \) such that the sequence \((x_k) = (Ax_0)\) is dense in \(\mathcal{T}^N \), which contradicts (C2). Thus \(\det A \neq 0 \). On the other hand, since \((\Sigma_{A,0})\) is one-sided topologically transitive, the matrix \(A \) has no roots of unity as eigenvalues by virtue of Proposition 1.

Conversely, assume that \(\det A \neq 0 \) and that \(A \) has no roots of unity as eigenvalues. As (C1) is a consequence of (C2) and (C3) (see \([2; 29, \text{Theorem 1.3.1}]\)), we only have to establish the later properties. (C2) follows from Proposition 1. To prove (C3) we need to prove two lemmas.

Lemma 1. Let \(A \in \mathbb{Z}^{N \times N} \) be such that \(\det A \neq 0 \), and pick any \(p \in \mathbb{N} \) with \((p, \det A) = 1\) (i.e., \(p \) and \(\det A \) are relatively prime). Then the map \(T : x \in (\mathbb{Z}/p\mathbb{Z})^N \mapsto Ax \in (\mathbb{Z}/p\mathbb{Z})^N \) is invertible.

Proof of Lemma 1. First, observe that the map \(T \) is well-defined. Indeed, if \(X, Y \in \mathbb{Z}^N \) fulfill \(X - Y \in (p\mathbb{Z})^N \), then \(AX - AY \in (p\mathbb{Z})^N \) so that \(AX \) and \(AY \) belong to the same coset in \((\mathbb{Z}/p\mathbb{Z})^N = \mathbb{Z}^N/(p\mathbb{Z})^N \). As \((p\mathbb{Z})^N \) is a finite set, we only have to prove that \(T \) is one to one. Let \(X, Y \in \mathbb{Z}^N \) be such that \(AX = AY \) in \((\mathbb{Z}/p\mathbb{Z})^N \) (i.e., \(A(X - Y) \in (p\mathbb{Z})^N \)). We aim to show that \(X = Y \) in \((\mathbb{Z}/p\mathbb{Z})^N \) (i.e., \(X - Y \in (p\mathbb{Z})^N \)). Set \(U = X - Y \), and pick a vector \(Z \in \mathbb{Z}^N \) such that \(AZ = pZ \). It follows that \(U = (p/\det A)AZ \), where \(A \in \mathbb{Z}^{N \times N} \) denotes the adjoint matrix of \(A \) (i.e., the transpose of the matrix formed by the cofactors). Since \(U \in \mathbb{Z}^N \), each component of the vector \(pAZ \) is divisible by \(\det A \). Since \((p, \det A) = 1\), we infer the existence of a vector \(V \in \mathbb{Z}^N \) such that \(AV = (\det A)V \). Then \(X - Y = U = pV \in (p\mathbb{Z})^N \), as desired. \(\square \)

Lemma 2. Let \(A \) and \(p \) be as in Lemma 1, and let \(E_p := \{0, (1/p), \ldots, (p - 1/p)\} \subset \mathbb{T} \). Then each point \(x \in E_p \) is periodic for \((\Sigma_{A,0})\). As a consequence, the set of periodic points of \((\Sigma_{A,0})\) is dense in \(\mathcal{T}^N \) (i.e., (C3) is satisfied).

Proof of Lemma 2. First, observe that for any \(i, j \in \{0, \ldots, p - 1\} \), \(i/p \equiv j/p \) (mod 1) if and only if \(i \equiv j \) (mod \(p \)). We infer from Lemma 1 that the map \(T : x \in E_p^N \mapsto Ax \in E_p^N \) is well-defined and invertible. Pick any \(x \in E_p^N \). As the sequence \((\tilde{T}^k x)_{k \geq 1}\) takes its values in the (finite) set \(E_p^N \), there exist two numbers \(k_2 > k_1 \geq 1 \) such that \(\tilde{T}^{k_1} x = \tilde{T}^{k_2} x \). \(\tilde{T} \) being invertible, we conclude that \(A^{k_2 - k_1} x = x \) (i.e., \(x \) is a periodic point). Finally, the set \(E = \cup \{E_p; p \geq 1, (p, \det A) = 1\} \) is clearly dense in \(\mathcal{T}^N \) (take for \(p \) any large prime number), and all its points are periodic. This completes the proof of Lemma 2 and of Theorem 1. \(\square \)

For an affine transformation, we obtain a very similar result to Theorem 1 when \(1 \not\in \text{sp}(A) \).

Corollary 1. Let \(A \in \mathbb{Z}^{N \times N} \) and \(b \in \mathbb{T}^N \). Assume that \(1 \) is not an eigenvalue of \(A \). Then \((\Sigma_{A,b})\) is chaotic if, and only if, \(\det A \neq 0 \) and \(A \) has no roots of unity as eigenvalues.

Proof. Pick any \(B \in \mathbb{R}^N \) with \(\overline{B} = b \). As \(1 \not\in \text{sp}(A) \), we may perform the change of variables

\[
x = r - (A - I)^{-1}B,
\]

which transforms (2) into

\[
r_{k+1} = Ar_k,
\]

\[
r_0 = x_0 + (A - I)^{-1}B.
\]

Clearly, the conditions (C2) and (C3) are fulfilled for \((\Sigma_{A,b})\) if and only if they are fulfilled for (4). Therefore, the result is a direct consequence of Theorem 1. \(\square \)

2.2. Equidistribution

Let us consider now a discrete dynamical system with an output

\[
\begin{align*}
x_{k+1} &= Ax_k + b, \\
y_k &= Cx_k,
\end{align*}
\]

where \(x_0 \in \mathcal{T}^N \), \(A \in \mathbb{Z}^{N \times N} \), \(b \in \mathbb{T}^N \) and \(C \in \mathbb{Z}^{1 \times N} \). It should be expected that the output \(y_k \) inherits the chaotic behavior of the state \(x_k \). However, Devaney’s definition of a chaotic system cannot be tested on the sequence \((y_k)\), since this sequence is not defined as a trajectory of a dynamical system. Rather, we may give a condition ensuring that the sequence \((y_k)\) is equidistributed (hence dense) in \(\mathcal{T} \) for a.e. \(x_0 \), a property which may be seen as an *ersatz* of (C2).

If \(X = (X_1, \ldots, X_N) \), \(Y = (Y_1, \ldots, Y_N) \) are any given points in \([0, 1)^N \) and \(x = \overline{X}, y = \overline{Y} \), then we say that \(x < y \) (resp., \(x \leq y \)) if \(X_i < Y_i \) (resp., \(X_i \leq Y_i \)) for \(i = 1, \ldots, N \). The set of points \(z \in \mathcal{T}^N \) such that \(x \leq z < y \) will be denoted by \([x, y)\). Let \((x_k)_{k \geq 0}\) be any sequence in \(\mathcal{T}^N \). For any subset \(E \subset \mathcal{T}^N \), let \(S_E(E) \) denote the number of points \(x_k \), \(0 \leq k \leq K - 1 \), which lie in \(E \).

Definition 2 (Kuipers and Niederreiter [9]). We say that \((x_k)_{k \geq 0}\) is uniformly distributed modulo 1
Therefore, for every lattice point \(p \in \mathbb{Z}^N \), \(p \neq 0 \), and for a.e. \(x_0 \in \mathbb{T}^N \)

\[
\frac{1}{K} \sum_{0 \leq k < K} e^{2\pi i px_0} \rightarrow 0 \quad \text{as} \quad K \to +\infty.
\]

The next result shows that under the same assumptions as in Corollary 1 the sequences \((x_k)\) and \((y_k)\) are respectively equidistributed in \(\mathbb{T}^N \) and for a.e. initial state \(x_0 \in \mathbb{T}^N \).

Theorem 2. Let \(A \in \mathbb{Z}^{N \times N}, b \in \mathbb{T}^N \) and \(C \in \mathbb{Z}^{1 \times N} \). Assume that \(det(A) \neq 0 \) and that \(A \) has no roots of unity as eigenvalues (hence \(\Sigma_{A,b} \) is chaotic). Then for a.e. \(x_0 \in \mathbb{R}^N \) the sequence \((x_k)_{k \geq 0}\) (defined in (2)) is equidistributed in \(\mathbb{T}^N \), and the sequence \((y_k)_{k \geq 0} = (Cx_k)_{k \geq 0}\) is equidistributed in \(\mathbb{T} \).

Proof. By virtue of Theorem 1, the map \(f(x) = Ax + b \) is ergodic on \(\mathbb{T}^N \). It follows then from Birkhoff Ergodic Theorem (see e.g. [30, Theorem 1.14]) that for any \(h \in L^1(\mathbb{T}^N, dm) \) and for a.e. \(x_0 \in \mathbb{T}^N \)

\[
\frac{1}{K} \sum_{0 \leq k < K} h(f^k(x_0)) \to \int_{\mathbb{T}^N} h(y) dm(y) \quad \text{as} \quad K \to +\infty.
\]

Therefore, for every lattice point \(p \in \mathbb{Z}^N \), \(p \neq 0 \), and for a.e. \(x_0 \in \mathbb{T}^N \)

\[
\frac{1}{K} \sum_{0 \leq k < K} e^{2\pi ipx_0} \rightarrow 0 \quad \text{as} \quad K \to +\infty.
\]

As \(\mathbb{Z}^N \setminus \{0\} \) is countable, the same property holds for a.e. \(x_0 \in \mathbb{T}^N \) and all \(p \in \mathbb{Z}^N \setminus \{0\} \). Therefore, we infer from Weyl criterion that the sequence \((x_k) = (f^k(x_0))\) is equidistributed for a.e. \(x_0 \in \mathbb{T}^N \). Pick any \(x_0 \in \mathbb{T}^N \) such that the sequence \((x_k)\) is equidistributed, and let us show that the output sequence \((y_k) = (Cx_k)\) is also equidistributed provided that \(C = (C_1, \ldots, C_N) \neq (0, \ldots, 0) \). For any \(p \in \mathbb{Z} \setminus \{0\} \)

\[
\frac{1}{K} \sum_{0 \leq k < K} e^{2\pi ipy_k} = \frac{1}{K} \sum_{0 \leq k < K} e^{2\pi ipC \cdot x_k} \rightarrow 0 \quad \text{as} \quad K \to +\infty,
\]

hence the equidistribution of \((y_k)\) follows again by Weyl criterion.

2.3. Links between stability and chaoticity

It has been demonstrated in Theorem 1 that a system \(\Sigma_{A,0} \) is chaotic if and only if the spectrum of \(A \) does not contain 0 nor a root of unity. The proof of this result was based upon Ergodic Theory. The aim of this section is to provide a direct proof of this result (more precisely, of (\(C_2^0 \)) in the more familiar situation where \(A \) is a “dilating matrix”, i.e.,

\[
\text{sp}(A) \subset \{ z \in \mathbb{C} ; |z| > 1 \}.
\]

In stability words, the condition (5) amounts to saying that the linear system \(X_{k+1} = A^{-1}X_k \) is asymptotically stable in \(\mathbb{C}^N \). The following result is obtained in using classical stability arguments.

Lemma 3. Let \(A \in \mathbb{Z}^{N \times N} \) fulfilling (5), and let \(U \) be any nonempty open set in \(\mathbb{T}^N \). Then there exists a number \(k \in \mathbb{N}^* \) such that \(f^k(U) = \mathbb{T}^N \), where \(f(x) = Ax \).

Proof. We claim that we are done if we show that for any \(X \in \mathbb{R}^N \) and any (arbitrary small) \(\varepsilon > 0 \), we may pick a \(k > 0 \) such that

\[
A^kX + [0, 1)^N \subset A^kB_{\varepsilon}(X).
\]

(\(B_{\varepsilon}(X) \) denoting the open ball in \(\mathbb{R}^N \) centered at \(X \) with radius \(\varepsilon \)). Indeed, we infer from (6) that

\[
\mathbb{T}^N = \pi(A^kX + [0, 1)^N) \subset \pi(A^kB_{\varepsilon}(X)) = f^k(\pi(B_{\varepsilon}(X)))
\]

and the result of the lemma follows at once. It remains to show that (6) holds true. As \(\text{sp}(A^{-1}) \subset \{ z \in \mathbb{C} ; |z| < 1 \} \), the linear system \(X_{k+1} = A^{-1}X_k \) is asymptotically stable in \(\mathbb{C}^N \), hence there exists a \(k > 0 \) such that \(A^{-k}[0, 1)^N \subset B_{\varepsilon}(0) \). Therefore, \([0, 1)^N \subset A^kX + [0, 1)^N \subset A^k(X + B_{\varepsilon}(0)) = A^kB_{\varepsilon}(X) \), as desired. \(\Box \)

It follows from Lemma 3 that if (5) holds true, then the system \(\Sigma_{A,0} \) is one-sided topologically transitive (as \(C_2^0 \) is clearly satisfied).

3. Chaotic switched systems

In this section we extend the results of Section 2 to switched affine systems on the \(N \)-dimensional torus.

3.1. Switched systems

To define what we mean by a switched system, we assume given a sequence \((A_j)_{1 \leq j \leq J}\) of matrices in \(\mathbb{Z}^{N \times N} \) and a sequence \((b_j)_{1 \leq j \leq J}\) of points in \(\mathbb{T}^N \), and we consider the following (periodic) switching signal \(\sigma : \mathbb{N} \to \{1, \ldots, J\} \)
A direct inspection of Devaney’s definition cannot be made,

The resolution of (11) is then reduced to the resolution of

Definition 3. The switched system $\Sigma_{A,b,\sigma}$ associated with the sequences $A = (A_j)_{1 \leq j \leq J}$, $b = (b_j)_{1 \leq j \leq J}$ and the switching signal σ is defined by

$$\Sigma_{A,b,\sigma} \quad x_{k+1} = A_{\sigma(k)}x_k + b_{\sigma(k)} \quad \forall k \geq 0. \quad (8)$$

If e.g., $J = 2$ and $b_1 = b_2 = 0$, then the first terms of the sequence (x_k) read $x_1 = A_1x_0$, $x_2 = A_2x_1 = A_2A_1x_0$, $x_3 = A_1x_2 = A_1A_2A_1x_0$, etc. Notice that (8) defines a dynamical system associated with a particular switching signal. Having in mind the applications to chaos synchronization and cryptography, we shall not consider (as in [1]) the case where the switching signal is any random function $\sigma : \mathbb{N} \to \{1, \ldots, J\}$.

The first issue of interest is the chaotic behavior of (8). A direct inspection of Devaney’s definition cannot be made, since the dynamical system (8) is time-varying. However, using the periodic structure of the switching signal, we shall see in the next section that it is possible to put the dynamical system (8) into a time invariant form.

3.2. Time-invariant form

We first perform a change of variables as in the proof of Corollary 1, namely

$$r_k = x_k + z_{\sigma(k)} \quad \forall k \geq 0, \quad (9)$$

where the points $z_j \in \mathbb{T}^N$ for $j = 1, \ldots, J$ are chosen in such a way that

$$r_{k+1} = A_{\sigma(k)}r_k \quad \forall k \geq 0. \quad (10)$$

Straightforward calculations show that (10) is satisfied provided that

$$z_{\sigma(k+1)} = A_{\sigma(k)}z_{\sigma(k)} - b_{\sigma(k)} \quad \forall k \in \{0, \ldots, J - 1\},$$

i.e.,

$$z_2 = A_1z_1 - b_1,$$

$$z_3 = A_2z_2 - b_2,$$

$$\vdots$$

$$z_J = A_{J-1}z_{J-1} - b_{J-1},$$

$$z_1 = A_Jz_J - b_J. \quad (11)$$

The resolution of (11) is then reduced to the resolution of the following single equation

$$(A_J A_{J-1} \ldots A_1 - I)z_1 = A_J \ldots A_2 b_1 + \cdots + A_J b_{J-1} + b_J. \quad (12)$$

When $1 \not\in \text{sp}(A_J A_{J-1} \ldots A_1)$, then writing $b_j = \overline{B_j}$ for each j and setting

$$Z_1 := (A_J A_{J-1} \ldots A_1 - I)^{-1}(A_J \ldots A_2 b_1 + \cdots + A_J b_{J-1} + b_J),$$

we obtain that $z_1 := \overline{Z_1}$ is a solution to (12). Defining z_2, \ldots, z_J by (11), we conclude that for this choice of z_1, \ldots, z_J, the change of variables (9) transforms (8) into (10).

Let $\mathcal{X} := \{(z_1, \ldots, z_J) \in \mathbb{T}^N \mid z_1 \in \mathbb{T}^N\}$, $G := \{(r_0, A_1 r_0, A_2 A_1 r_0, \ldots, A_{J-1} \ldots A_1 r_0) \mid r_0 \in \mathbb{T}^N\}$, and $M := \mathcal{X} - \mathcal{X}$. Consider the map $\phi : \mathbb{N}^N \to G$, defined by $\phi(r_0) = (r_0, A_1 r_0, \ldots, A_{J-1} \ldots A_1 r_0)$. Then G is a compact connected subgroup of $(\mathbb{R}^N)^J$ (hence a Lie group), and ϕ is a group isomorphism which is continuous together with its inverse. It follows that the map $h : r_0 \in \mathbb{T}^N \mapsto \phi(r_0) - \mathcal{X} \in M$ is also continuous together with its inverse. Thus $M = \{h(r_0) \mid r_0 \in \mathbb{T}^N\}$ may as well be considered as the state space. A simple computation shows that for any $p \geq 0$

$$r_{pJ} = (A_J \ldots A_1)^p r_0,$$

$$r_{pJ+1} = A_1 r_{pJ} = (A_1 A_J \ldots A_2)^p A_1 r_0,$$

$$\vdots$$

$$r_{pJ-J+1} = (A_{J-1} \ldots A_1 A_J)^p A_{J-1} \ldots A_1 r_0,$$

that is

$$\mathcal{R}_p = \mathcal{A}^p \mathcal{R}_0 \quad (13)$$

with $\mathcal{R}_p = (r_{pJ}, r_{pJ+1}, \ldots, r_{pJ+J-1}) \in G$ and

$$\mathcal{A} = \begin{pmatrix}
A_J & \ldots & A_1 & 0 & \cdots & 0 \\
0 & A_1 A_J A_{J-1} & \cdots & A_2 & 0 & \cdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\
0 & \cdots & 0 & A_{J-1} & \cdots & A_1 A_J
\end{pmatrix} \in \mathbb{Z}^{NJ \times NJ}. \quad (14)$$

(13) may be rewritten as

$$\mathcal{R}_{p+1} = \mathcal{A} \mathcal{R}_p \quad \forall p \geq 0. \quad (15)$$

Letting $\mathcal{X}_p = (x_{pJ}, x_{pJ+1}, \ldots, x_{pJ+J-1}) \in M$ (hence $\mathcal{X}_p = \mathcal{R}_p - \mathcal{X}$), we have that $\mathcal{X}_{p+1} = \mathcal{A} \mathcal{X}_p + (\mathcal{A} - I) \mathcal{X}$. The above considerations may be summarized in the following result.

Proposition 3. Assume that 1 is not an eigenvalue of the matrix $A_J A_{J-1} \ldots A_1$. Then the switched system (8) may be seen as the following time-invariant dynamical system in M:

$$\mathcal{X}_{p+1} = \mathcal{A} \mathcal{X}_p + (\mathcal{A} - I) \mathcal{X} \quad \forall p \geq 0. \quad (16)$$

3.3. Chaoticity and equidistribution

Eq. (16) may be seen as the restriction to M of a time invariant affine dynamical system on \mathbb{T}^{NJ} to which the theory developed in Section 2 may be applied. The first result
of this section provides a sufficient condition for (16) to be chaotic.

Theorem 3. Assume that the matrix \(\mathcal{A} \) in (14) is invertible and has no root of unity as eigenvalues. Then the dynamical system (15) is chaotic on \(G \), and the dynamical system (16) is chaotic on \(M \).

Proof. As the map \(\mathcal{A} \rightarrow \mathcal{A} \mathcal{X}_0 \) is chaotic on \(G \), to prove that the restriction of (16) to \(G \) is chaotic, we check that the conditions in Definition 1 are fulfilled. First of all, it is easily seen that the map

\[
\{(x_0, x_1, \ldots, x_{j-1}) \in (\mathbb{T}^N)_J : (x_0, x_1, \ldots, x_{j-1}) \neq (0,0,\ldots,0)\}, \text{ where } J \text{ is as above.}
\]

is one-sided topologically transitive (and ergodic) by virtue of Theorem 1, i.e., the inherent nonlinearity in the chaotic systems under study.

Remark 1. The restriction of a chaotic system to an invariant subset may fail to be chaotic, as is shown by the following example. Consider the dynamical system (\(\Sigma_{A,0} \)) in \(\mathbb{T}^2 \) with

\[
A = \begin{pmatrix} -3 & 1 \\ -1 & 0 \end{pmatrix}.
\]

Then (\(\Sigma_{A,0} \)) is chaotic on \(\mathbb{T}^2 \), as the spectrum of \(A \) is \(\sigma(A) = \{(3 + \sqrt{5})/2 \} \). Let \(G \) denote the projection on \(\mathbb{T}^2 \) of the eigenspace associated with the eigenvalue \(-(3 + \sqrt{5})/2 \), i.e., \(G = \pi(\text{Ker}(A - ((3 + \sqrt{5})/2)I)) \). Clearly, (C1) fails to be true for (\(\Sigma_{A,0} \)) restricted to \(G \), for \(|-(3 + \sqrt{5})/2| < 1 \).

An equidistribution property follows under the same assumptions.

Corollary 2. Let \(\mathcal{A} \) be as in Theorem 3, and let \(C \in \mathbb{Z}^{1 \times N} \{0\} \). Then for a.e. \(x_0 \in \mathbb{R}^N \) the sequence \((x_n) \) (defined in (8)) is equidistributed in \(\mathbb{T}^N \), and the sequence \((y_k) = (C x_k) \) is equidistributed in \(\mathbb{T} \).

Proof. Assume first that \(\mathcal{A} = 0 \) (i.e., \(b_1 = \cdots = b_J = 0 \)). It follows from [30, Theorem 1.11 p. 31] that the map \(\mathcal{A} \rightarrow \mathcal{A} \mathcal{X}_0 \) is ergodic on \(G \), hence for any \(h \in L^1(G, \mu) \) and for a.e. \(\mathcal{X}_0 \in G \)

\[
\frac{1}{K} \sum_{0 \leq k < K} h(\mathcal{A}^k \mathcal{X}_0) \rightarrow \int_G h(\mathcal{X}) \, d\mu(\mathcal{X}) \text{ as } K \to +\infty,
\]

where \(\mu \) denotes the Haar measure on \(G \) (see e.g. [30]). It is easy to check that \(\mu(\mathcal{A}(B)) = m(B) \) for any Borel set \(B \subset \mathbb{T}^N \).

Pick \(h(x_0, x_1, \ldots, x_{j-1}) = e^{2\pi i (p_0 x_0 + \cdots + p_{j-1} x_{j-1})} \) with \((p_0, \ldots, p_{j-1}) \in (\mathbb{Z}^N)_J \setminus \{0\} \). Taking \(p_0 \neq 0 \) and \(p_1 = \cdots = p_{j-1} = 0 \), there obtains

\[
\frac{1}{K} \sum_{0 \leq k < K} e^{2\pi i p_0 x_{j-1}} \rightarrow \int_{\mathbb{T}^N} e^{2\pi i p_0 x} \, dm(x) = 0,
\]

hence the sequence \((x_{j-1}) \) is equidistributed. A similar argument shows that the subsequences \((x_{j+1}), \ldots, (x_{j+J-1}) \) are equidistributed as well. It follows that the sequence \((x_i) \) is equidistributed in \(\mathbb{T}^N \). When \(\mathcal{A} \neq 0 \), the above argument shows that the sequences \((y_{j+1}), \ldots, (y_{j+J-1}) \) are equidistributed. Using the periodicity of \(\sigma \), we conclude that the sequences \((x_i), (y_{j+1}), \ldots, (y_{j+J-1}) \) are equidistributed, hence \((x_i) \) is equidistributed in \(\mathbb{T}^N \). The proof that the sequence \((y_k) \) is equidistributed in \(\mathbb{T} \) is as above.

4. Synchronization and information recovering

The aim of this section is to suggest a chaos-based encryption scheme involving affine transformations on the \(N \)-torus. It differs from the one introduced in [14] in that the maps involve \(\mathbb{Z} \)-valued matrices. New stability results are provided in this framework. More precisely, we provide some conditions which guarantee a finite-time synchronization despite the inherent nonlinearity in the chaotic systems under study.

4.1. Encryption setup

At each discrete time \(k \), a symbol \(m_k \in \mathbb{T} \) (the plaintext) of a sequence \((m_k)_{k \geq 0} \) is encrypted by a (nonlinear) encryption function \(e \) which "mixes" \(m_k \) and \(x_k \) and produces a ciphertext \(u_k = e(x_k, m_k) \). We also assume given a decrypting function \(d \) such that \(m_k = d(x_k, u_k) \) for each \(k \). Next, the ciphertext \(u_k \) is embedded in the dynamics (8). We shall consider the following encryption

\[
\begin{align*}
(x_{k+1})_{\Sigma_{A,b,M,C,\sigma}} & = A_{\sigma(k)}(x_k + M_{\sigma(k)} u_k) + b_{\sigma(k)} , \\
y_k & = C_{\sigma(k)}(x_k + M_{\sigma(k)} u_k),
\end{align*}
\]

which corresponds to an embedding of the ciphertext in both the dynamics and the output. In (17), \(A_{\sigma(k)} \in \mathbb{Z}^{N \times N} \),
are matrices belonging to the respective families \((A_j)_{1\leq j \leq J}, \ (M_j)_{1\leq j \leq J}, \) and \((C_j)_{1\leq j \leq J}, \) and \(b_{\sigma(k)} \in \mathbb{T}^N\) is a vector belonging to the family \((b_j)_{1\leq j \leq J}, \) \(\sigma\) is the switching signal as defined in (7). \(y_k \in \mathbb{T}\) is the output conveyed to the receiver through the channel.

From the definition of the decrypting function \(d\), it is clear that to retrieve \(m_k\) at the decryption side we need to recover the pair \((x_k, u_k)\), which in turn calls for reproducing a chaotic sequence \((\hat{x}_k)\) synchronized with \((x_k)\) (i.e., such that \(\hat{x}_k - x_k \to 0\)). To this end, we propose a mechanism based on some suitable switched unknown input observers, inspired from the ones given in [14] and [15]. The main differences are that: (i) the gain matrices have to be \(\mathbb{Z}\)-valued because of the congruential operations; (ii) a finite-time synchronization is achieved for obvious practical reasons.

For the encryption considered here, the decryption involves the following observer-like structure

\[
\begin{align*}
\hat{x}_{k+1} &= A_{\sigma(k)} \hat{x}_k + L_{\sigma(k)}(y_k - \hat{y}_k) + b_{\sigma(k)}, \\
\hat{y}_k &= C_{\sigma(k)} \hat{x}_k,
\end{align*}
\]

where \(\hat{x}_k \in \mathbb{T}^N\) and \(\hat{y}_k \in \mathbb{T}\) (\(\hat{x}_0\) being an arbitrary point in \(\mathbb{T}^N\)). We stress that \(\hat{x}_{k+1}\) and \(\hat{y}_k\) are well-defined provided that the observer gain \(L_{\sigma(k)}\) is \(\mathbb{Z}\)-valued.

Setting \(e_k = x_k - \hat{x}_k\), when subtracting (18) from (17) we obtain that the error dynamics reads

\[
e_{k+1} = (A_{\sigma(k)} - L_{\sigma(k)} C_{\sigma(k)}) e_k + (A_{\sigma(k)} - L_{\sigma(k)} C_{\sigma(k)}) M_{\sigma(k)} u_k
\]

Before proceeding to the design of the observers, we give a few definitions and a preliminary result.

4.2. Definitions and a preliminary result

Definition 4. A pair \((A^b, C^b)\) is said to be in a companion canonical form if it takes the form

\[
A^b = \begin{pmatrix}
-z_N^{-1} & 1 & 0 & \cdots & 0 \\
-z_N^{-2} & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
-z^1 & 0 & 0 & \cdots & 1 \\
-z^0 & 0 & 0 & \cdots & 0
\end{pmatrix},
\]

\[
C^b = (1 \ 0 \ \cdots \ 0).
\]

It is well-known that the characteristic polynomial of \(A^b\) reads \(\chi_{A^b}(\lambda) = \lambda^N + z_1 \lambda^{N-1} + \cdots + z^1 \lambda + z^0\).

Definition 5. Two pairs \((A, C)\) and \((A^b, C^b)\) in \(\mathbb{Z}^{N \times N} \times \mathbb{Z}^{1 \times N}\) are said to be similar over \(\mathbb{Z}\) if there exists a matrix \(T \in \mathbb{Z}^{N \times N}\) with \(\det T = \pm 1\) (hence \(T^{-1} \in \mathbb{Z}^{N \times N}\) too) such that

\[A = T^{-1} A^b T, \quad C = C^b T.\]

The following result provides a sufficient condition for an observable pair \((A, C)\) to admit a \(\mathbb{Z}\)-valued gain matrix \(L\) such that \(A - LC\) is (discrete-time) Hurwitz.

Proposition 4. Let \(A \in \mathbb{Z}^{N \times N}\) and \(C \in \mathbb{Z}^{1 \times N}\) be two time-invariant matrices. Assume that \((A, C, \mathbb{Z})\) is similar over \(\mathbb{Z}\) to a pair \((A^b, C^b)\) in a companion canonical form (the first column of \(A^b\) reads \((-z_1^N, \ldots, -z^0)^T\), where \(\cdot^T\) stands for transpose). Then there exists a unique matrix \(L \in \mathbb{Z}^{N \times 1}\) such that the matrix \(A - LC\) is Hurwitz (i.e., \(\text{sp}(A - LC) \subset \{z \in \mathbb{C}; |z| < 1\}\), namely \(L = T^{-1} L^b\) with \(L^b = (-z_N^{N-1}, \ldots, -z^0)^T\)). Furthermore, \((A - LC)^N = 0\).

Proof. Write \(A = T^{-1} A^b T, \ C = C^b T\), with \((A^b, C^b)\) as in (20) and \(T \in \mathbb{Z}^{N \times N}\) with \(\det T = \pm 1\). For any given matrix \(L \in \mathbb{Z}^{N \times 1}\), we define the matrix \(L^b = (l_N^N, \ldots, l^0)^T\) by \(L^b = TL\). Then, \(A - LC = T^{-1} (A^b - LC^b) T\) with

\[
A^b - LC^b = \begin{pmatrix}
-z_N^{-1} & -1 & 0 & \cdots & 0 \\
-z_N^{-2} & -1 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
-z^1 & -1 & 0 & \cdots & 1 \\
-z^0 & 0 & 0 & \cdots & 0
\end{pmatrix}
\]

Its characteristic polynomial reads

\[
\chi_{A^b - LC^b}(\lambda) = \lambda^N + (z_1^N - 1) \lambda^{N-1} + \cdots + (z^1 + 1) \lambda + (z^0).
\]

If \(L\) is such that \(A - LC\) is Hurwitz, then \((A^b - LC^b) = T(A - LC) T^{-1}\) is Hurwitz too, hence we may write \(\chi_{A^b - LC^b}(\lambda) = \chi_{A^b - LC^b}(\lambda) = \lambda^N + (z_1^N - 1) \lambda^{N-1} + \cdots + (z^1 + 1) \lambda + (z^0)\). Its roots \(\lambda_1, \ldots, \lambda_{N-p}\) in the set \(\{z \in \mathbb{C}; 0 < |z| < 1\}\) has its roots \(\lambda_1, \ldots, \lambda_{N-p}\) in the set \(\{z \in \mathbb{C}; 0 < |z| < 1\}\). Assume that \(p < N\), and denote by \(q\) the constant coefficient of \(y\). Then \(q \neq 0\) (since \(y(0) \neq 0\)), and \(|q| = \prod_{i=1}^{N-p} |\lambda_i| < 1\), which is impossible, since \(q \in \mathbb{Z}\). Therefore \(p = N\) and \(l_j = -z_j^1\) for any \(j \in \{0, \ldots, N-1\}\) (hence \(L^b\) and \(L\) are unique). On the other hand

\[
A^b - L^b C^b = \begin{pmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
0 & 0 & 0 & \cdots & 0
\end{pmatrix}
\]

For this choice of \(L\), \(\chi_{A - LC}(\lambda) = \lambda^N\) and \((A - LC)^N = 0\). \(\square\)

It should be emphasized that the above argument shows that a \(\mathbb{Z}\)-valued matrix \(A\) is Hurwitz if and only if it is nilpotent. In other words, the system \(v_{k+1} = A v_k\) is asymptotically stable if and only if it is finite-time stable.

4.3. Synchronization of switched systems

Consider a switched system

\[v_{k+1} = \mathcal{N}_{\sigma(k)} v_k\]

(22)
in which each matrix in \((\mathcal{N}_j)_{1 \leq j \leq J}\) is nilpotent. The following result proves to be useful to guarantee that the state vector \(v_k\) reaches zero in finite time.

Lemma 4. Let \(\mathcal{N}_1, \ldots, \mathcal{N}_N\) be \(N\) nilpotent matrices in \(\mathbb{C}^{N \times N}\). Assume that the Lie algebra spanned by these matrices is resoluble. Then \(\mathcal{N}_1 \mathcal{N}_2 \cdots \mathcal{N}_N = 0\).

Proof. Let \(\text{Lie}(\mathcal{N}_1, \ldots, \mathcal{N}_N)\) denote the Lie algebra spanned by the matrices \(\mathcal{N}_1, \ldots, \mathcal{N}_N\). Since \(\text{Lie}(\mathcal{N}_1, \ldots, \mathcal{N}_N)\) is resoluble, we infer from Lie theorem (see e.g. [28, Theorem 3.7.3]) that there exists an invertible matrix \(T \in \mathbb{C}^{N \times N}\) such that each matrix \(\mathcal{N}_j := T^{-1} \mathcal{N}_j T\) is upper triangular with zeros on the diagonal. Now, a straightforward computation shows that \(\mathcal{N}_1 \mathcal{N}_2 \cdots \mathcal{N}_N = 0\). □

Remark 2. The Lie algebraic condition in Lemma 4 is useful, since the product of \(N\) nilpotent matrices in \(\mathbb{C}^{N \times N}\) may fail to be nilpotent without any additional assumption. Indeed, we observe that \(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}\). It is however easy to see that the product of \(N\) nilpotent matrices which commute pairwise is 0. Lemma 4 provides a nice generalization of this observation.

The following result is the main result of this section.

Theorem 4. Let us consider (17) and (18). Assume that the following conditions are fulfilled for each \(j = 1, \ldots, J\):

(a) The pair \((A_j, C_j)\) is similar over \(\mathbb{Z}\) to a pair \((\hat{A}_j, \hat{C}_j)\) in a companion canonical form through \(T_j \in \mathbb{Z}^{N \times N}\) with \(\det T_j = \pm 1\).

(b) The matrix \(T_j\) may be written in the form \(T_j = S_j T\) with \(S_j\) being upper triangular of determinant \(\pm 1\), \(T\) being any square matrix in \(\mathbb{Z}^{N \times N}\) with \(\det T = \pm 1\).

(c) The matrix \(M_j \in \mathbb{Z}^{N \times 1}\) is such that \(M_j = T_j^{-1} M^b\) with

\[
M^b = (1 \ 0 \ \ldots \ 0)'.
\]

(d) The matrix \(L_j \in \mathbb{Z}^{N \times 1}\) is such that \(L_j = T_j^{-1} L_j^b\) with

\[
L_j^b = (-x_j^{N-1} \ldots - x_j^0)' = \text{first column of } A_j^b.
\]

Then the error (19) fulfills \(e_k = 0\) for \(k \geq N\) and for any \(\hat{x}_0\) in (18). Furthermore, \(\hat{u}_k := y_k - C_{\sigma(k)} \hat{x}_k = u_k\) for \(k \geq N\).

Proof. On one hand, if (a) and (d) are fulfilled, a simple computation leads to

\[
A_j - L_j C_j = T_j^{-1} (A_j^b - L_j^b C_j) T_j = T_j^{-1} \mathcal{N} T_j
\]

with

\[
\mathcal{N} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
0 & 0 & 0 & \cdots & 0
\end{pmatrix}.
\]

\(\mathcal{N}\) is clearly a nilpotent, upper triangular matrix. Moreover, from (a) and (c), \((A_j - L_j C_j) M_j = T_j^{-1} \mathcal{N} M_j'\) and \(\mathcal{N} M_j' = 0\). As a result, \((A_j - L_j C_j) M_j = 0\), hence

\[
e_{k+1} = (A_{\sigma(k)} - L_{\sigma(k)} C_{\sigma(k)}) e_k \quad \forall k \geq 0.
\]

Iterated applications of (26) yield

\[
e_{j+p,j} = (A_j - L_j C_j) \cdots (A_1 - L_1 C_1)
\times \{((A_j - L_j C_j) \cdots (A_1 - L_1 C_1))^p e_0\}
\]

with, from (a) and (b), \(A_j - L_j C_j = T_j^{-1} (S_j^{-1} \mathcal{N} S_j T)\). Let now \(\mathcal{F}\) denote the set of upper triangular complex matrices. It is well-known that \(\mathcal{F}\) is a resoluble Lie algebra (see [28, p. 201]). As each matrix \(S_j^{-1} \mathcal{N} S_j\) is upper triangular, the Lie algebra \(\text{Lie}(S_j^{-1} \mathcal{N} S_1, S_j^{-1} \mathcal{N} S_2, \ldots, S_j^{-1} \mathcal{N} S_J)\) is a Lie subalgebra of \(\mathcal{F}\), hence it is resoluble. The same property holds true for

\[
\text{Lie}(A_1 - L_1 C_1, \ldots, A_j - L_j C_j)
\]

\(= T_j^{-1} \text{Lie}(S_j^{-1} \mathcal{N} S_1, S_j^{-1} \mathcal{N} S_2, \ldots, S_j^{-1} \mathcal{N} S_J) T_j\).

It follows then from Lemma 4 that \(e_k = 0\) for all \(k \geq N\). On the other hand, according to (17),

\[
y_k = C_{\sigma(k)} x_k + M_{\sigma(k)} u_k
\]

\(= C_{\sigma(k)} e_k + C_{\sigma(k)} \hat{x}_k + C_{\sigma(k)} M_{\sigma(k)} u_k\)

hence, as \(C_{\sigma(k)} M_{\sigma(k)} = 1\),

\[
\hat{u}_k := y_k - C_{\sigma(k)} \hat{x}_k = C_{\sigma(k)} e_k + u_k = u_k \quad \forall k \geq N.
\]

Remark 3. (1) The choice \(S_j = I\) for all \(j\) in (b) corresponds to the case when the matrices \(T_j\) are identical and equal to \(T(2)\). The result in Theorem 4 is sharp for \(N = 2\). Indeed, let \(T_1, T_2 \in \mathbb{Z}^{2 \times 2}\) be any matrices with determinant \(\pm 1\), and let \(\mathcal{N} = \begin{pmatrix} 0 & 1 \\
0 & 0
\end{pmatrix}\).

Then a direct computation shows that the matrix \((T_2^{-1} \mathcal{N} T_2)\) \((T_1^{-1} \mathcal{N} T_1)\) is nilpotent if and only if \(\text{Lie}(S_2^{-1} \mathcal{N} S_2, \mathcal{N})\) is resoluble (where \(S_2 = T_2 T_1^{-1}\)), if and only if \(S_2\) is upper triangular.

4.4. Concluding remarks

The message-embedding masking technique studied here does not originate from the conventional cryptography (see [12] for a good survey). Nevertheless, it seems to be highly related to some popular encryption schemes, the so-called
stream ciphers [16]. Therefore, it is desirable that the proposed scheme be robust against both statistical and algebraic attacks. On one hand, the robustness against statistical attacks follows from the chaotic behavior of the output. On the other hand, the security against algebraic attacks rests on the difficulty to identify the parameters of the system, the parameters acting as the secret key. The identification of the parameters seems to be here a hard task for two reasons:

1. The particular structure of the encryption system \((\Sigma_{A,b,M,C,a}) \), that is the dimension and the number of the matrices \(A_j \), is assumed to be unknown;

2. The ciphertext \(u_k \) actually results from a mixing between the plaintext \(m_k \) and the state \(x_k \) \((u_k = e(x_k, m_k)) \). This generally results in a highly nonlinear dynamics \((\Sigma_{A,b,M,C,a}) \), rendering the parameters hardly identifiable [10].

A real-time implementation has already been carried out on an experimental platform involving a secured multimedia communication. (For details about the platform, see e.g. [13]). The security aspects are currently investigated and are out of the scope of the paper.

Acknowledgements

One of the authors (Lionel Rosier) wishes to thank A. Bacciotti and C. Mauduit, who brought to his attention the references [29] and [30], respectively.

References