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Abstract. In this paper we study a linear inverse problem with a biological interpretation,
which is modeled by a Fredholm integral equation of the first kind. When the kernel in
the Fredholm equation is represented by step functions, we obtain identifiability, stability
and reconstruction results. Furthermore, we provide a numerical reconstruction algorithm
for the kernel, whose main feature is that a non-regular mesh has to be used to ensure the
invertibility of the matrix representing the numerical discretization of the system. Finally,
a second identifiability result for a polynomial approximation of degree less than nine of
the kernel is also established.
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1 Introduction

In this work we study an integral inverse problem coming from the biology
of the olfactory system. The transduction of an odor into an electrical signal
is accomplished by a depolarizing influx of ions through cyclic-nucleotide-gated
(CNG) channels in the membrane. Those channels, that form the lateral surface of
the cilium, are activated by adenosine 3’, 5’-cyclic monophosphate (cAMP).

The distribution of the channels should be crucial in determining the kinetics of
the neuronal response.

Experimental procedures developed by Steven Kleene and Rick Flannery in the
College of Medicine (University of Cincinnati) have produced data from which
the distributions of CNG channels can be inferred using mathematical and compu-
tational procedures developed by Donald French et al. (see [5]). The techniques
for the procedure have been developed in [7–10].

We explore the hypothesis that CNG channel distributions can be derived from
the experimental current data and known properties of the cilia (a biological in-
verse problem). To accomplish this, we consider a mathematical model of this



2 C. Conca, R. Lecaros, J. H. Ortega and L. Rosier

experiment to proposed by D.A. French & C.W. Groetsch [6].
D.A. French et al. [5] proposed a mathematical model for the dynamics of

cAMP concentration in this experiment, consisting of two nonlinear differential
equations and a constrained Fredholm integral equation of first kind. The un-
knowns of the system of differential equations proposed by French are the con-
centration of cAMP, the membrane potential and the distribution ρ of CNG chan-
nels along the length of a cilium. A very natural issue is whether it is possible
to recover the distribution of CNG channels along the length of a cilium by only
measuring the electrical activity produced by the diffusion of cAMP into cilia.
A simple numerical method to obtain estimates of channels distribution was pro-
posed in [5]. Certain computations indicated that this mathematical problem was
ill-conditioned.

Later, D.A. French & D.A. Edwards [4] studied the above inverse problem by
using perturbation techniques. A simple perturbation approximation was derived
and used to solve the inverse problem, and to obtain estimates of the spatial dis-
tribution of CNG ion channels. A one-dimensional computer minimization and
a special delay iteration were used with the perturbation formulas to obtain ap-
proximate channel distributions in the cases of simulated and experimental data.
On the other hand, D.A. French & C.W. Groetsch [6] introduced some simplifica-
tions and approximations in the problem, leading to an analytical solution for the
inverse problem. A numerical procedure was proposed for a class of integral equa-
tions suggested by this simplified model and numerical results were compared to
laboratory data.

In this paper we consider the linear problem proposed in [6], with an improved
approximation of the kernel, along with studying the identifiability, stability and
numerical reconstruction for the corresponding inverse problem.

The inverse problem we are interesting in this work consists in determining a
positive function ρ = ρ(x) > 0 from the measurement of

Im[ρ](t) = J0

∫ L

0
ρ(x)Km(t, x)dx, (1.1)

for t ∈ I, where I is a time interval, ρ is the channel distribution, J0 is a positive
constant and the kernel Km(t, x) is defined by

Km(t, x) = Fm(w(t, x)), (1.2)

where w(t, x), defined in (2.14), represents an approximation of the concentration
of cAMP c(t, x) defined in (2.3), while Fm, defined in (2.7), is a step function
approximation of the Hill function F , given by

F (x) =
xn

xn +Kn
1/2

· (1.3)
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In (1.3), the exponent n is an experimentally determined parameter and K1/2 > 0
is a constant which corresponds to the half-bulk concentration.

Under a strong assumption about the regularity of ρ (namely, ρ is analytic), we
obtain in Theorem 3.4 an identifiability result for (1.1) with a single measurement
of Im[ρ] on an arbitrary small interval around zero. The second identifiability
result, Theorem 3.5, requires weaker regularity assumptions about ρ (namely, ρ ∈
L2(0, L)), but it requires the measurement of Im[ρ] on a large time interval.

Furthermore, in Theorem 3.9, using appropriate weighted norms and Mellin
transform (see [12]), we obtain a general stability result for the operator Im[ρ] for
ρ ∈ L2(0, L). Using a non-regular mesh for the approximation of Fm, we develop
a reconstruction procedure in Theorem 3.10 to recover ρ from Im. Additionally,
for this non-regular mesh, a general stability result for a large class of norms is
rigorously established in Theorem 3.11.

Finally, we also investigate the same inverse problem with another approxima-
tion of the kernel obtained by replacing Hill’s function by its Taylor expansion of
degree m around c0 > 0.

More precisely, the polynomial kernel approximation is defined as

PKm(t, x) = Pm(c(t, x)− c0), (1.4)

where Pm ∈ R[x] with deg (Pm) ≤ m is such that

F (x) = Pm(x− c0) +O(|x− c0|m+1),

and c(t, x), the concentration of cAMP, is defined as the solution of the diffusion
problem (2.3). Thus, the total current with polynomial approximation is given by

PIm[ρ](t) = J0

∫ L

0
ρ(x)PKm(t, x)dx ∀t > 0. (1.5)

In Theorem 8.1 we derive an identifiability result for the operator PIm, when
the degree of Pm is less than nine.

The paper is organized as follows. In Section 2, we set the problem, introduce
the principal assumptions and some operator Φm that we use to derive the main
results regarding the operator Im. Those results are presented in Section 3. Sec-
tion 4 is devoted to prove the identifiability theorems. Section 5 contains the proof
of Theorem 3.9 concerning the stability of Im. The proof of the results involving
the reconstruction procedure are developed in Section 6, while the numerical algo-
rithm and some examples are shown in Section 7. Finally, in Section 8, we prove
an identifiability result for PIm (Theorem 8.1).
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2 Setting the problem

In this section we set the mathematical model related to the inverse problem
arising in olfaction experimentation.

The starting point is the linear model introduced in [6]. As already mentioned,
a nonlinear integral equation model was developed in [5] to determine the spatial
distribution of ion channels along the length of frog olfactory cilia. The essential
nonlinearity in the model arises from the binding of the channel activating ligand
to the cyclic-nucleotide-gated ion channels as the ligand diffuses along the length
of the cilium. We investigate a linear model for this process, in which the binding
mechanism is neglected, leading to a particular type of linear Fredholm integral
equation of the first kind with a diffusive kernel. The linear inverse problem con-
sists in determining ρ = ρ(x) > 0 from the measurement of

I[ρ](t) = J0

∫ L

0
ρ(x)K(t, x)dx, t ≥ 0, (2.1)

where the kernel is
K(t, x) = F (c(t, x)), (2.2)

F being given by (1.3) and c denoting the concentration of cAMP, which is gov-
erned by the following initial boundary value problem:

∂c

∂t
−D

∂2c

∂x2 = 0, t > 0, x ∈ (0, L),

c(t, 0) = c0, t > 0,
∂c

∂x
(t, L) = 0, t > 0,

c(0, x) = 0, x ∈ (0, L).

(2.3)

The (unknown) function ρ is the ion channel density function, and c is the con-
centration of a channel activating ligand that is diffusing from left-to-right in a thin
cylinder (the interior of the cilium) of length L with diffusivity constant D. I[ρ](t)
is a given total transmembrane current, the constant J0 has units of current/length,
and c0 is the maintained concentration of cAMP at the open end of the cylinder
(while x = L is considered as the closed end). We note that (2.1) is a Fredholm
integral equation of the first kind.

The associated inverse problem is in general ill-posed. For instance, if K is
sufficiently smooth, then the operator defined above is compact from Lp(0, L) to
Lp(0, T ) for 1 < p < ∞. Even if the operator I is injective, its inverse will not be
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continuous. Indeed, if I is compact and I−1 is continuous, then it follows that the
identity map in Lp(0, L) is compact, a property which is clearly false.

In what follows, we consider a simplified version of the above problem under
more general assumptions than those in [6].

Let us consider the constants J0, c0 and D introduced above and a fixed integer
m ∈ N. Then we introduce the approximate total current

Im[ρ](t) = J0

∫ L

0
ρ(x)Km(t, x)dx, t ≥ 0, (2.4)

where the kernel Km is defined as

Km(t, x) = Fm
(
c0 erfc

( x

2
√
Dt

))
. (2.5)

In (2.5), “erfc” denotes the complementary error function:

erfc(z) = 1 − 2√
π

z∫

0

exp(−τ 2)dτ. (2.6)

We note that when L is large, c0 erfc(x/(2
√
Dt)) provides an approximation of

the solution of (2.3). The function Fm is a step function defined by

Fm(x) = F (c0)
m∑

j=1

ajH(x− αj) ∀x ∈ [0, c0], (2.7)

with F as in (1.3). H is the Heaviside unit step function; that is,

H(u) =






1 if u ≥ 0,

0 if u < 0.
(2.8)

Finally, the positive constants {aj}mj=1 and {αj}mj=1 satisfy

m∑

j=1

aj = 1, 0 < α1 < α2 < · · · < αm < c0, (2.9)

and hence {αj}mj=1 defines a partition of the interval (0, c0).
If we choose {aj}mj=1 such that Fm is an approximation of Hill’s function F on

the interval [0, c0], i.e.

F (x) ( Fm(x) = F (c0)
m∑

j=1

ajH(x− αj) ∀x ∈ [0, c0], (2.10)
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then
Km ( K.

Therefore, we can view the functional Im in (2.4) as an approximation of the
functional I in (2.1).

Now, we introduce the operator (used thereafter)

Φm[ϕ](t) =
m∑

j=1

ajϕ (hj(t)) ∀t ≥ 0, (2.11)

where hj(s) = min{L, βjs} with

βj = 2
√
D erfc−1(αj/c0) for j = 1, ...,m. (2.12)

Thus, we have the following useful relation

Im[ρ](t) = J0F (c0)Φm[ϕ](
√
t) t ≥ 0, (2.13)

with
ϕ(x) =

∫ x

0
ρ(τ)dτ.

Indeed, if we define

w(t, x) = c0 erfc
(

x

2
√
Dt

)
, (2.14)

and put together (2.4), (2.5) and (2.7), we obtain

Im[ρ](t) = J0

∫ L

0
ρ(x)Km(t, x)dx

= J0F (c0)
m∑

j=1

aj

∫ L

0
ρ(x)H(w(t, x)− αj)dx

= J0F (c0)
m∑

j=1

aj

∫

Gj(t)∩(0,L)

ρ(x)dx,

(2.15)

with Gj(t) := {x ∈ R : w(t, x) ≥ αj}. Since the “erfc” function is decreasing,
we see that

Gj(t) =
[
0, βj

√
t
]
, (2.16)

with {βj}mj=1 as in (2.12). (Note that β1 > β2 > · · · > βm.) Thus, we have

Im[ρ](t) = J0F (c0)

( m∑

j=1

aj

hj(
√
t)∫

0

ρ(x)dx

)
, (2.17)
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and using the definition of Φm in (2.11), we obtain (2.13).
Clearly, Φm is linear, and it follows from (2.9) that Φm(1) = 1, and that for

any f ∈ L∞(0, L) it holds

‖Φm[f ]‖L∞(0,L/βm) ≤ ‖f‖L∞(0,L) .

Furthermore, for any f ∈ C0([0, L]) with f(L) = 0, we have

‖Φm[f ]‖Lp(0,L/βm) ≤




m∑

j=1

ajβ
−1/p
j



 ‖f‖Lp(0,L) , 1 ≤ p < ∞. (2.18)

Note that the operator Φm is well defined on C0([0, L]). Therefore, using (2.18)
and the fact that the set {f ∈ C0([0, L] : f(L) = 0} is dense in Lp(0, L), we can
extend the operator Φm to Lp(0, L), for all 1 ≤ p < +∞.

Finally, we introduce some notations. We set

Lk = L/βk for k = 1, ...,m, and L0 = 0, (2.19)

and for any γ > 0, we introduce the following weighted norms

‖f‖0,γ,b = ‖σγf‖L2(0,b) ,

‖f‖1,γ,b = ‖σγf‖H1(0,b) ,

‖f‖−1,γ,b = ‖σγf‖H−1(0,b)

with σγ(x) = xγ .

3 Main results

In this section we present the main results in this paper. We begin by study-
ing the functional Φm defined in (2.11). It is worth noticing with (2.13) that the
identifiability for Φm is equivalent to the identifiability for Im.

Firstly, we discuss some identifiability results for the operator Φm. We begin
with the analytic case.

Theorem 3.1 (Identifiability for analytic functions). Let ϕ : (−ε, L + ε) → R be
an analytic function satisfying

Φm[ϕ](t) = 0 ∀t ∈ (0, δ), (3.1)

where Φm is defined in (2.11), and ε and δ are some positive numbers. Then ϕ ≡ 0
in [0, L].
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The second identifiability result requires less regularity for ϕ, provided that a
measurement on a sufficiently large time interval is available.

Theorem 3.2. Let ϕ : [0, L] → R be a given continuous function satisfying

Φm[ϕ](t) = 0 ∀t ∈ [0, Lm], (3.2)

where Φm is defined in (2.11). Then ϕ ≡ 0 in [0, L].

Remark 3.3. Theorem 3.2 is actually true for any function ϕ : [0, L] → R satisfy-
ing (3.2).

The proof of Theorem 3.2, which is based only upon algebraic arguments, gives
us an idea on how the kernel could be reconstructed and how one can envision a
numerical algorithm.

0

L

tL4L3L2L1

h4

h3

h2

h1

hj(t) = min{βjt, L}

Figure 1. With m = 4, we plot the functions hj on the interval [0, Lm].

Let us give the main ideas in the proof of Theorem 3.2. Recall that the hj’s (see
Figure 1) are the functions involved in the definition of Φm in (2.11). Note first
that Φm[ϕ](0) = ϕ(0) and Φm[ϕ](t) = ϕ(L) for all t ≥ Lm. Thus, using (3.2),
we see that ϕ vanishes on {0, L}. Next, we observe that for t ∈ [Lm−1, Lm), we
have Φm[ϕ](t) = amϕ(βmt) + Cϕ(L), where C =

∑m−1
j=1 aj . It follows that ϕ
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vanishes in [λL,L] ∪ {0}, where λ = βm
βm−1

< 1. Applying the same argument in
[Lm−1, Lm), [Lm−2, Lm−1), etc. we can “increase” the set where ϕ is known to
be zero. Note that, in general, it cannot be done directly on [Lm−2, Lm−1).

Indeed, let us consider the case when m = 4 (see again Figure 1), and assume
that ϕ vanishes on [λL,L] ∪ {0}, where λ = β4

β3
< 1. For t ∈ [L2, L3), we have

Φ4[ϕ](t) = a4ϕ(β4t) + a3ϕ(β3t) + Cϕ(L),

where C =
∑2

j=1 aj , so that, using (2.11) and ϕ(L) = 0, we obtain

0 = a4ϕ(β4t) + a3ϕ(β3t), ∀t ∈ [L2, L3),

i.e.
0 = a4ϕ(λτ) + a3ϕ(τ), ∀τ ∈ [β3L2, L).

Therefore, if λ1 = β3/β2 ≥ λ, the set [λ1L,L) is contained in [λL,L] ∪ {0}, and
we infer that ϕ vanishes in [β4L2, λL)∪ [λL,L]∪{0}. The same argument can be
applied in the following interval, namely [L1, L2). The above procedure suggests
how the reconstruction process could be carried out, but under the condition

β4

β3
≤ β3

β2
,

which is a restriction on the mesh defined in (2.9).
The corresponding identifiability results for the operator Im are as follows.

Corollary 3.4 (Identifiability for analytic functions). Let ρ : (−ε, L+ ε) → R be
an analytic function satisfying

Im[ρ](t) = 0 ∀t ∈ (0, δ), (3.3)

where Im is defined in (2.4), and ε and δ are some positive numbers. Then ρ ≡ 0
in [0, L].

Corollary 3.5. Let ρ : [0, L] → R be a given function in L2(0, L) such that

Im[ρ](t) = 0 ∀t ∈ [0, L2
m]. (3.4)

where Im is defined in (2.4). Then ρ ≡ 0 in [0, L].

Corollaries 3.4 and 3.5 follow at once from Theorems 3.1 and 3.2 by letting

ϕ(x) =

∫ x

0
ρ(τ)dτ.

Let us now proceed to the continuity and stability results.
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Theorem 3.6. Let ϕ ∈ H1(0, L) be a given function. Then there exists a constant
C̃1 > 0 such that

‖Φm[ϕ]‖H1(0,Lm) ≤ C̃1 ‖ϕ‖H1(0,L) , (3.5)

where C̃1 depends only on L, β1, βm and Φm given by (2.11).

We are now in a position to state our first main result. Firstly, we define the
function

Λγ
m(s) =

∣∣∣∣∣∣

m∑

j=1

ajβ
−( 1

2+γ−is)
j

∣∣∣∣∣∣
, (3.6)

where i =
√
−1 is the imaginary unit.

Theorem 3.7. Let ϕ ∈ C([0, L]) be a given function. Then there exists a constant
γ0 ∈ R such that for any γ > γ0,

Cγ ‖ϕ(·)− ϕ(L)‖0,γ,L ≤ ‖Φm[ϕ](·)− Φm[ϕ](Lm)‖0,γ,Lm
, (3.7)

with
Cγ := inf

s∈R
Λγ
m(s) > 0,

and Φm is given by (2.11).

It is worth noting that (3.7) can be viewed as an inverse inequality of (2.18)
for p = 2 and for functions ϕ ∈ {f ∈ C([0, L]); f(L) = 0}, and it can also
be regarded as a stability estimate for the functional Φm. Its proof involves some
properties of Mellin transform. Hereafter, we refer to γ0 as the smallest number
such that

Cγ > 0, ∀γ > γ0.

Next, we present a continuity result for the operator Im.

Corollary 3.8. Let ρ : [0, L] → R be a function in L2(0, L). Then, for γ ≥ 3
4 ,

there exists a positive constant C1 > 0, such that

‖Im[ρ]‖1,γ,L2
m
≤ C1 ‖ρ‖L2(0,L) , (3.8)

where C1 depends only on L, α1, αm−1, αm, am and γ.

Besides, we present a stability result for the operator Im.
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Corollary 3.9. Let ρ : [0, L] → R be a function in L2(0, L). Then, for any γ >
max{γ0, 3/4}, there exists a positive constant C2 > 0 such that

‖ρ‖−1,γ+1,L ≤ C2 ‖Im[ρ]‖1, γ2 −
1
4 ,L

2
m
, (3.9)

where C2 depends only on L,Cγ > 0 and γ.

Corollaries 3.8 and 3.9 are consequences of Theorems 3.6 and 3.7, respectively.
Even if the proof of Theorem 3.2 is provided for any choice of the partition

{αj}mj=1 of [0, c0], its proof can be considerably simplified in the special case
when

αj = c0erfc
(
β0βj

2
√
D

)
j = 1, ...,m, (3.10)

with β ∈ (0, 1) and β0 > 0 constants. Note that the corresponding mesh is non-
regular.

In what follows, Im and Φm are denoted by Ĩm and Φ̃m, respectively, when αj

is given by (3.10).
For the reconstruction, we introduce the function

g(t) =
Ĩm[ρ](t2/β2

0)− Ĩm[ρ](L2
m)

J0F (c0)
∀t ∈ [0, β0Lm) . (3.11)

As mentioned in the Introduction, we look for a reconstruction algorithm and a
numerical scheme to recover function ρ from the measurement of Ĩm[ρ]. We begin
by recovering ϕ̃ : [0, L] → R, which satisfies

Φ̃m[ϕ̃](t/β0) = g(t), ∀t ∈ [0, β0Lm). (3.12)

Next, we define functions ϕ1, ϕ2, ..., ϕm by means of the following induction for-
mulae:

ϕ1(x) =






1
am

g

(
x

βm

)
, if x ∈ [βL,L),

0, otherwise,

(3.13)

and

ϕk+1(x) =






1
am



g

(
x

βm

)
−

k∑

j=1

am−k−1+jϕj

(
βjx

βk+1

)

, x ∈ [βk+1L, βkL),

0, otherwise,
(3.14)
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for k = 1, ..,m− 1. Furthermore for k ≥ m, we define

ϕk+1(x) =






1
am



g

(
x

βm

)
−

m−1∑

j=1

ajϕj+k−m+1

(
βjx

βm

)

,x ∈ [βk+1L, βkL),

0, otherwise.
(3.15)

With the above definitions we have the following reconstruction result:

Theorem 3.10. Let ρ be a function in C0([0, L]), let g be defined as in (3.11), and
let {ϕj}j≥1 be given by (3.13)-(3.15). Then the function ϕ̃ defined by

ϕ̃(x) =






+∞∑

j=1

ϕj(x), if x ∈ (0, L],

g(0), if x = 0,

(3.16)

is well defined and satisfies

Φ̃m[ϕ̃](t/β0) = g(t) ∀t ∈ [0, β0Lm]. (3.17)

Furthermore, ρ satisfies
∫ x

0
ρ(z)dz = ϕ̃(x) +

Ĩm[ρ](L2
m)

J0F (c0)
∀x ∈ [0, L]. (3.18)

Theorem 3.10 provides an explicit reconstruction procedure for both operators
Φ̃m and Ĩm and therefore a numerical algorithm for the reconstruction.

The previous reconstruction procedure gives us the possibility to obtain a sharper
stability result. We shall provide a stability result for Φ̃m in terms of a quite gen-
eral norm.

We consider a family of norms ‖·‖[a,b) for functions f : [a, b) → R, where
0 ≤ a < b < ∞, which enjoys the following properties:

(i) ‖f‖[a,b) < ∞ for any f ∈ W 1,1(a, b);

(ii) If [a1, b1) ⊂ [a, b), then

‖f‖[a1,b1)
≤ ‖f‖[a,b) ; (3.19)
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(iii) For any λ > 0, there exists a positive constant C(λ) such that

‖gλ‖[λa,λb) ≤ C(λ) ‖f‖[a,b) , (3.20)

where gλ(x) = f(x/λ), and C(·) is a nondecreasing function with C(1) = 1.

A natural family of norms fulfilling (i), (ii), and (iii), is those of Lp norms,
where 1 ≤ p ≤ +∞. Indeed, (i) and (ii) are obvious, and (iii) holds with

C(λ) =

{
λ

1
p if p ∈ [1,+∞),

1 if p = ∞.

Another family of norms fulfilling (i), (ii), and (iii), is the family of BV-norms:

‖f‖BV (a,b) = ‖f‖L∞(a,b) + sup
a≤x1<···<xk<b

k∑

j=1

|f(xk)− f(xk−1)| . (3.21)

Here, we can pick C(λ) = 1. (Note that W 1,1(a, b) ⊂ BV (a, b), see e.g. [2].)
These kinds of norms are adapted to functions with low regularity, as e.g. step
functions. The second main result in this paper is the following stability result.

Theorem 3.11. Let ρ ∈ C0([0, L]) be a function and let a family of norms satisfy-
ing conditions (i), (ii) and (iii). Then, we have for all k ≥ 0

‖ϕ(·)− ϕ(L)‖[βk+1L,βkL) ≤ C(β0)
C(βm)

ak+1
m

∥∥Φ̃m[ϕ](·)−Φ̃m[ϕ](Lm)
∥∥
[βk+1Lm,Lm)

,

(3.22)

where ϕ(x) =

∫ x

0
ρ(τ)dτ.

Theorem 3.11 shows in particular that the value of ϕ in the interval [βk+1L, βkL)
depends on the value of Φ̃m[ϕ] in the interval [βk+1Lm, Lm), a property which is
closely related to the nature of the reconstruction procedure.

4 Proof of identifiability results

This section is devoted to proving the identifiability results for the operator Φm.

Proof of Theorem 3.1. Let ϕ be an analytic function such that

Φm[ϕ](t) =
m∑

j=1

ajϕ(hj(t)) = 0 ∀t ∈ (0, δ).
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Then, taking t ∈ (0,min{δ, L1}) and using the fact that

L0 < L1 < · · · < Lm, (4.1)

we see that hj(t) = βjt, j = 1, ...,m. Then, we have

m∑

j=1

ajϕ(βjt) = 0, t ∈ (0,min{δ, L1}).

If we derive the above expression and evaluate it at zero, we obtain

ϕ(k)(0)




m∑

j=1

aj(βj)
k



 = 0 ∀k ≥ 0,

where ϕ(k)(0) denotes the k−th derivative of ϕ at zero. Since aj , βj are positive,
we have that

∑m
j=1 aj(βj)

k > 0; therefore ϕ(k)(0) = 0 for all k ≥ 0, and hence
ϕ ≡ 0. This proves the identifiability for Φm in the case of analytic functions.

To prove Theorem 3.2, we need some technical lemmas.

Lemma 4.1. Let f, g : [0, L] → R be functions, and let s, α0 ∈ [0, 1) and λ ∈
(0, 1) be numbers such that

f(τ) + g(λτ) = 0 ∀τ ∈ [sL, L), (4.2)

and
f(τ) = 0 ∀τ ∈ [α0L,L). (4.3)

Then
g(τ) = 0 ∀τ ∈ [α1L, λL), (4.4)

where α1 = λmax{s, α0}.

Lemma 4.1 is a direct consequence of (4.2) and (4.3).

Lemma 4.2. Let f : [0, L] → R be a function, and let s, α0 ∈ [0, 1) and λ ∈ (0, 1)
be some numbers such that

f(τ) = 0 ∀τ ∈ [α̃kL,L) ∀k ≥ 1, (4.5)

where
α̃k = λmax{s, α̃k−1} ∀k ≥ 1, (4.6)
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with α̃0 = α0.
Then, if s > 0,

f(τ) = 0 ∀τ ∈ [sλL, L),

and if s = 0,
f(τ) = 0 ∀τ ∈ (0, L).

Proof. To prove the above lemma, we need to consider two cases: s = 0 and
s > 0.

If s > 0, we claim that there exists k0 such that α̃k0 < s. Otherwise, if α̃k ≥
s ∀k ≥ 0, replacing in (4.6), we have

α̃k+1 = λα̃k,

and hence α̃k = α̃0λk → 0, which is impossible, for s > 0.
Using (4.6), the desired result follows, since

α̃k = λs ∀k > k0.

Now, if s = 0, replacing it in (4.6) we obtain

α̃k = α0λ
k.

Then, using (4.5) we have

f(τ) = 0, ∀τ ∈ (0, L),

which completes the proof.

Lemma 4.3. Let f : [0, L] → R be a function, and let s, α0 ∈ [0, 1), λ1, ..., λn ∈
(0, 1) and ak > 0, k = 0, ..., n be some numbers such that λ1 > λ2 > · · · > λn ≥
α0, and

a0f(t) +
n∑

j=1

ajf(λjt) = 0 ∀t ∈ [sL, L), (4.7)

and
f(τ) = 0 ∀τ ∈ [α0L,L). (4.8)

Then
f(τ) = 0 ∀τ ∈ [αL,L), (4.9)

where α = λns.
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Proof. We prove this result by induction on n.

Case n = 1. In this case, from (4.7) we have the following equations

a0f(t) + a1f(λ1t) = 0 ∀t ∈ [sL, L), (4.10)

f(τ) = 0 ∀τ ∈ [α0L,L), (4.11)

and α0 ≤ λ1. Then, applying Lemma 4.1 with g = f , we get

f(τ) = 0 ∀τ ∈ [α1L, λ1L),

where α1 = λ1 max{s, α0}, and thus

f(τ) = 0 ∀τ ∈ [α1L,L),

for α0 ≤ λ1.
If α0 = 0, we obtain the desired result:

f(τ) = 0 ∀τ ∈ [λ1sL, L).

On the other hand, when α0 > 0, we can apply Lemma 4.1 again with α0
replaced by α1, since we have

a0f(t) + a1f(λ1t) = 0 ∀t ∈ [sL, L),

f(τ) = 0 ∀τ ∈ [α1L,L),

and α1 ≤ λ1. Thus, we get by induction on k ≥ 0

f(τ) = 0 ∀τ ∈ [αkL,L), ∀k ≥ 1, (4.12)

where
αk = λ1 max{s, αk−1} ∀k ≥ 1. (4.13)

Note that, if s = 0, letting t = 0 in (4.10) yields f(0) = 0. Using Lemma 4.2 with
(4.12)-(4.13), we conclude that

f(τ) = 0 ∀τ ∈ [λ1sL, L),

which completes the case n = 1.

Case n+ 1. Assume the lemma proved up to the value n, and let us prove it for
the value n+ 1.
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Assume given a function f : [0, L] → R and some numbers s, α0 ∈ [0, 1), ak >
0 for 0 ≤ k ≤ n+ 1, λ1, ..., λn+1 ∈ (0, 1) with 1 > λ1 > λ2 > · · · > λn+1 ≥ α0,
and such that

a0f(t) +
n+1∑

j=1

ajf(λjt) = 0 ∀t ∈ [sL, L), (4.14)

and
f(τ) ≡ 0 ∀τ ∈ [α0L,L). (4.15)

Then we aim to prove that

f(τ) = 0 ∀τ ∈ [λn+1sL, L).

We introduce the function

ψ(τ) =
n+1∑

j=1

ajf(
λj

λ1
τ) = a1f(τ) +

n+1∑

j=2

ajf(λ̃jτ),

where λ̃j =
λj

λ1
, j = 2, .., n+ 1.

Then, using (4.15), we have

ψ(τ) = 0 ∀τ ∈ [λ1
α0

λn+1
L,L). (4.16)

On the other hand, from (4.14), we have

a0f(τ) + ψ(λ1τ) = 0 ∀τ ∈ [sL, L).

Then, from (4.15) and Lemma 4.1 with g = ψ, we conclude

ψ(τ) = 0 ∀τ ∈ [λ1 max{α0, s}L, λ1L).

Next, we set s1 = λ1 max{α0, s} ∈ [0, 1). Using (4.16), we have ψ ≡ 0 on
[s1L, λ1L) ∪ [λ1

α0
λn+1

L,L). Therefore, with α0
λn+1

≤ 1,

ψ(τ) = a1f(τ) +
n+1∑

i=2

aif(λ̃iτ) = 0 ∀τ ∈ [s1L,L). (4.17)

Note that 1 > λ̃2 > λ̃3 > · · · > λ̃n+1, and that α0 ≤ λn+1 < λn+1
λ1

= λ̃n+1.
Then, by using the induction hypothesis with (4.17) and (4.15), we obtain

f(τ) = 0 ∀τ ∈ [α1L,L),
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where α̃1 = s1λ̃n+1 = λn+1 max{s, α0} < λn+1. Then we can repeat the latter
argument replacing α0 by α̃1, and we obtain

f(τ) = 0 ∀τ ∈ [α̃kL,L) ∀k ≥ 1,

where
α̃k = λn+1 max{s, α̃k−1} ∀k ≥ 1, (4.18)

with α̃0 = α0 given. If s = 0, letting t = 0 in (4.14) yields f(0) = 0. Using
Lemma 4.2 we infer that

f(τ) = 0, ∀τ ∈ [αL,L),

where α = λn+1s, which completes the proof.

Proof of Theorem 3.2. Let ϕ : [0, L] → R be a function such that

Φm[ϕ](t) =
m∑

j=1

ajϕ(hj(t)) = 0 ∀t ∈ [0, Lm].

Then, if t = Lm, we obtain

hj(Lm) = L ∀j = 1, ...,m,

and hence
0 = Φm[ϕ](Lm) = ϕ(L). (4.19)

Next, for any k ∈ {1, ....,m}, we have
m∑

j=k

ajϕ(βjt) = 0 ∀t ∈ [Lk−1, Lk],

which is equivalent to

akϕ(t) +
m∑

j=k+1

ajϕ

(
βj
βk

t

)
= 0 ∀t ∈ [βkLk−1, βkLk] = [βkLk−1, L], (4.20)

for k = 1, 2, ...,m. We aim to prove that

ϕ(τ) = 0 ∀τ ∈ [βmLk−1, L],

for k = 1, ...,m. We proceed by induction on i = m− k ∈ {0, ...,m− 1}.

Case i = 0. Letting k = m in (4.20) yields

amϕ(t) = 0 ∀t ∈ [βmLm−1, L],
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which implies
ϕ(τ) = 0 ∀τ ∈ [βmLm−1, L], (4.21)

which completes the case i = 0.

Case i = 1. Letting k = m− 1 in (4.20), we obtain

am−1ϕ(t) + amϕ

(
βm
βm−1

t

)
= 0 ∀t ∈ [βm−1Lm−2, L]. (4.22)

We infer from Lemma 4.3 (applied with λ1 = βm
βm−1

, s = βm−1
βm−2

and α0 = βm
βm−1

)
that

ϕ(τ) = 0 ∀τ ∈ [βmLm−2, L].

Case i. Assume the property satisfied for i− 1, i.e.,

ϕ(τ) = 0 ∀τ ∈ [βmLm−i, L]. (4.23)

Replacing k = m− i in (4.20), we obtain

am−iϕ(t) +
m∑

j=m−i+1

ajϕ

(
βj

βm−i
t

)
= 0 ∀t ∈ [βm−iLm−i−1, L]. (4.24)

Then, if we set λj =
βj

βm−i
< 1, for j = m− i+ 1, ...,m,

s = βm−i
Lm−i−1

L
,

and α0 =
βm
βm−i

= λm, then we infer from Lemma 4.3 that

ϕ(τ) = 0 ∀τ ∈ [βmLm−i−1, L].

Thus
ϕ(τ) = 0 ∀τ ∈ [βmLk−1, L],

and for k = 1, ...,m. This implies (with k = 1 and L0 = 0)

ϕ(τ) = 0 ∀τ ∈ [0, L].

The proof of Theorem 3.2 is complete.
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5 Proofs of the stability results

We first prove Theorem 3.6.

Proof of Theorem 3.6. First, some estimates are established.

‖ϕ ◦ hj‖2
L2(0,Lm) =

∫ Lm

0
ϕ2(hj(t))dt

=

∫ Lj

0
ϕ2(βjt)dt+ ϕ2(L)L

(
1
βm

− 1
βj

)

≤ 1
βj

∫ L

0
ϕ2(t)dt+ ϕ2(L)

L

βm

≤ 1
βm

{
‖ϕ‖2

L2(0,L) + ϕ2(L)L
}

≤ 1
βm

(
1 + ||TL||2L

)
‖ϕ‖2

H1(0,L) , (5.1)

where TL(u) = u(L) is the trace operator in H1(0, L).
Now, if we set

c1 =
1√
βm

(
1 + ||TL||2L

) 1
2 ,

then using (5.1), we obtain

‖Φm[ϕ]‖L2(0,Lm) ≤
m∑

j=1

aj ‖ϕ ◦ hj‖L2(0,Lm) ≤ c1 ‖ϕ‖H1(0,L) . (5.2)

On the other hand, let ψ be any test function with compact support in (0, Lm).
Then

∫ Lm

0
Φm[ϕ](t)ψ′(t)dt =

m∑

j=1

aj

{∫ Lj

0
ϕ(βjt)ψ

′(t)dt+ ϕ(L)

∫ Lm

Lj

ψ′(t)dt

}

= −
m∑

j=1

ajβj

∫ Lj

0
ϕ′(βjt)ψ(t)dt (5.3)

= −
m∑

j=1

ajβj

∫ Lm

0
ϕ′(βjt)ψ(t)(1 −H(βjt− L))dt,
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where H denotes Heaviside’s function. Thus

(Φm[ϕ])′(t) =
m∑

j=1

ajβjϕ
′(βjt)(1 −H(βjt− L)) ∀t ∈ (0, Lm). (5.4)

Therefore, for any ϕ ∈ H1(0, L), the function Φm[ϕ] belongs to H1(0, Lm).
This, along with (5.4) yields

∥∥(Φm[ϕ])′
∥∥
L2(0,Lm)

≤
m∑

j=1

aj
√

βj

(∫ L

0
(ϕ′)2(t)dt

)1/2

≤
√

β1
∥∥ϕ′∥∥

L2(0,L) .

(5.5)
Combining (5.5) with equation (5.2), we obtain

‖Φm[ϕ]‖1,0,Lm
≤ C̃1 ‖ϕ‖1,0,L ,

where C̃1 =
√

(c1)2 + β1. The proof of Theorem 3.6 is therefore complete.

Now we proceed to the proof of Theorem 3.7. Before establishing this stabil-
ity result, we need recall well-known facts about Mellin Transform (the reader is
referred to [12] Chapter VIII, for details).

For any real numbers α < β, let < α, β > denote the open strip of complex
numbers s = σ + it (σ, t ∈ R) such that α < σ < β.

Definition 5.1 (Mellin transform). Let f be locally Lebesgue integrable over (0,+∞).
The Mellin transform of f is defined by

M[f ](s) =

+∞∫

0

f(x)xs−1dx ∀s ∈< α, β >,

where < α, β > is the largest open strip in which the integral converges (it is
called the fundamental strip).

Lemma 5.2. Let f be locally Lebesgue integrable over (0,+∞). Then the follow-
ing properties hold true:

(i) Let s0 ∈ R. Then for all s such that s+ s0 ∈< α, β >, we have

M[f(x)](s+ s0) = M[xs0f(x)](s).
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(ii) For any β ∈ R, if g(x) = f(βx), then

M[g](s) = β−sM[f ](s) ∀s ∈< α, β > .

Definition 5.3 (Mellin transform as operator in L2). For functions in L2(0,+∞)
we define a linear operator M̃ as

M̃ : L2(0,+∞) −→ L2(−∞,+∞),

f −→ M̃[f ](s) := 1√
2π
M[f ](1

2 − is).

Theorem 5.4 (Mellin inversion theorem). The operator M̃ is invertible with in-
verse

M̃−1 : L2(−∞,+∞) −→ L2(0,+∞),

ϕ −→ M̃−1[ϕ](x) := 1√
2π

∫ +∞
−∞ x−

1
2−isϕ(s)ds.

Furthermore, this operator is an isometry; that is,
∥∥M̃[f ]

∥∥
L2(−∞,∞)

= ‖f‖L2(0,∞) ∀f ∈ L2(0,+∞).

Proof of the Theorem 3.7. We note that for any function f : [0,+∞[→ R such
that supp(f) ⊂ [0, L), we have

f(hj(t)) = f(βjt).

Thus, we obtain

Φm[f ](t) =
m∑

j=1

ajf(βjt) ∀t ≥ 0, (5.6)

where {βj}mj=1 has been defined in (2.12).
Pick any ϕ ∈ C([0, L]) and let g : [0, Lm] → R be such that

Φm[ϕ](t) = g(t) ∀t ∈ [0, Lm]. (5.7)
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Define the functions

g̃(t) =






g(t)− g(Lm) 0 ≤ t ≤ Lm,

0 t ≥ Lm,

,ϕ̃(t) =






ϕ(t)− ϕ(L) 0 ≤ t ≤ L,

0 t ≥ L.
(5.8)

If we replace t by Lm in (5.7), we have the following compatibility condition

ϕ(L) = g(Lm).

Since Φm[1] = 1, we infer that

Φm[ϕ̃](t) = g̃(t) ∀t ≥ 0. (5.9)

Letting f = ϕ̃ in (5.6) yields

Φm[ϕ̃](t) =
m∑

j=1

ajϕ̃(βjt) ∀t ≥ 0.

It follows from Lemma 5.2 that

M [Φm[ϕ̃]] (s) =




m∑

j=1

ajβ
−s
j



M[ϕ̃](s) ∀s ∈< α, β >, (5.10)

where < α, β > is the fundamental strip associated with ϕ̃.

Let γ > 0 be a fixed constant. Using (5.10) and Lemma 5.2, we obtain

Λγ
m(s)

∣∣M̃[xγϕ̃(x)](s)
∣∣ =

∣∣M̃ [xγΦm[ϕ̃](x)] (s)
∣∣ ∀s ∈ R, (5.11)

where Λγ
m has been defined in (3.6). On the other hand,

Λγ
m(s) ≥ amβ

−γ− 1
2

m −

∣∣∣∣∣∣

m−1∑

j=1

ajβ
−(γ+ 1

2−is)
j

∣∣∣∣∣∣

≥ amβ
−γ− 1

2
m −

m−1∑

j=1

ajβ
−(γ+ 1

2 )
j

≥ amβ
−γ− 1

2
m − β

−(γ+ 1
2 )

m−1

= β
−γ− 1

2
m

(
am −

(
βm−1

βm

)−(γ+ 1
2 )
)
. (5.12)
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Therefore, if we choose

γ >
ln(am)

ln( βm
βm−1

)
− 1

2
,

then

Λγ
m(s) ≥ β

−γ− 1
2

m

(
am −

(
βm−1

βm

)−(γ+ 1
2 )
)

> 0 ∀s ∈ R.

Thus, there exists γ0 such that

Cγ = inf
s∈R

Λγ
m(s) > 0 ∀γ > γ0.

Therefore, using the fact that M̃ is an isometry and (5.11), we obtain

Cγ ‖ϕ̃‖0,γ,L ≤ ‖Φm[ϕ̃]‖0,γ,Lm
, (5.13)

which completes the proof of Theorem 3.7.

We are now in a position to prove Theorems 3.8 and 3.9.

Proof of Theorem 3.8. Let us fix any γ > 0 and let ρ : [0, L] → R be a function
in L2(0, L). From (2.13) we have

(xγIm[ρ](x))′ = γxγ−1Im[ρ](x) + xγ(Im[ρ](x))′

= γxγ−1Im[ρ](x) +
xγ−

1
2J0F (c0)

2
(Φm[ϕ])′(

√
x), (5.14)

where ϕ(x) =
x∫

0
ρ(τ)dτ. (Note that ϕ ∈ H1(0, L).) Since

∫ L2
m

0
x2γ−1 ((Φm[ϕ])′(

√
x)
)2

dx = 2
∫ Lm

0
τ 4γ−1 ((Φm[ϕ])′(τ)

)2
dτ

= 2
∥∥(Φm[ϕ])′

∥∥2
0,2γ− 1

2 ,Lm
, (5.15)
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we have

‖Im[ρ]‖2
1,γ,L2

m
≤ ‖Im[ρ]‖2

0,γ,L2
m

+

(
γ ‖Im[ρ]‖0,γ−1,L2

m
+

|J0F (c0)|√
2

∥∥(Φm[ϕ])′
∥∥

0,2γ− 1
2 ,Lm

)2

≤ ‖Im[ρ]‖2
0,γ,L2

m
+ 2γ2 ‖Im[ρ]‖2

0,γ−1,L2
m

+ (J0F (c0))
2 ∥∥(Φm[ϕ])′

∥∥2
0,2γ− 1

2 ,Lm
≤ (L2 + 2γ2) ‖Im[ρ]‖2

0,γ−1,L2
m
+

(J0F (c0))
2 ∥∥(Φm[ϕ])′

∥∥2
0,2γ− 1

2 ,Lm
. (5.16)

On other hand, using (2.13) and the change of variable τ = x2, we have

‖Φm[ϕ]‖2
0,2γ− 3

2 ,Lm
=

1
(F (c0)J0)

2

∫ Lm

0
x4γ−3 (Im[ρ](x2)

)2
dx

=
1

2 (F (c0)J0)
2 ‖Im[ρ]‖2

0,γ−1,L2
m
. (5.17)

By replacing (5.17) in (5.16), we obtain

‖Im[ρ]‖2
1,γ,L2

m
≤ (L2 + 2γ2)2 (F (c0)J0)

2 ‖Φm[ϕ]‖2
0,2γ− 3

2 ,Lm

+ (F (c0)J0)
2 ∥∥(Φm[ϕ])′

∥∥2
0,2γ− 1

2 ,Lm
, (5.18)

and assuming that γ ≥ 3
4 , from Theorem 3.6, we have

‖Im[ρ]‖1,γ,L2
m

≤
√

3L2 + 4γ2J0F (c0)L
2γ− 3

2 ‖Φm[ϕ]‖H1(0,Lm)

≤
√

3L2 + 4γ2J0F (c0)L
2γ− 3

2 C̃1 ‖ϕ‖H1(0,L) .

(5.19)

But, from Cauchy-Schwarz inequality we have |ϕ(x)| ≤
√
L ‖ρ‖L2(0,L) , and

hence

‖ϕ‖2
H1(0,L) = ‖ϕ‖2

L2(0,L) + ‖ρ‖2
L2(0,L) ≤ (L2 + 1) ‖ρ‖2

L2(0,L) .

Therefore, for any γ ≥ 3
4 , we have

‖Im[ρ]‖1,γ,L2
m
≤ C1 ‖ρ‖L2(0,L) ,

where
C1 =

√
3L2 + 4γ2J0F (c0)L

2γ− 3
2 C̃1(L

2 + 1)1/2,

and the proof of Theorem 3.8 is therefore finished.
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Proof of Theorem 3.9. Let ψ be any test function compactly supported in (0, L),
and let γ be a positive constant. Set

gγ(x) = xγρ(x), ϕ(x) =

∫ x

0
ρ(τ)dτ,

and
ϕ̃(t) = ϕ(x)− ϕ(L).

It follows that
(xγ+1ϕ̃(x))′ = (γ + 1)xγϕ̃(x) + gγ+1(x),

and hence,

< gγ+1, ψ > =

∫ L

0
gγ+1(x)ψ(x)dx

=

∫ L

0

(
(xγ+1ϕ̃(x))′ − (γ + 1)xγϕ̃(x)

)
ψ(x)dx

= −
∫ L

0

(
xγ+1ϕ̃(x)ψ′(x) + (γ + 1)xγϕ̃(x)ψ(x)

)
dx.

Then, we have

| < gγ+1, ψ > | ≤
(
‖ϕ̃‖0,γ+1,L + (γ + 1) ‖ϕ̃‖0,γ,L

)
‖ψ‖H1(0,L)

≤ (L+ γ + 1) ‖ϕ̃‖0,γ,L ‖ψ‖H1(0,L) .

Therefore,
‖gγ+1‖H−1(0,L) ≤ (L+ γ + 1) ‖ϕ̃‖0,γ,L . (5.20)

Thus, using Theorem 3.7, we have that for any γ > max{γ0,
3
4} there exists a

constant Cγ > 0 such that

‖ρ‖−1,γ+1,L = ‖gγ+1‖H−1(0,L) (5.21)

≤(L+ γ + 1)C−1
γ




‖Φm[ϕ]‖0,γ,Lm
+

L
γ+ 1

2
m√

2γ + 1
|Φm[ϕ](Lm)|




 .

Using (2.13), we have

Φm[ϕ](Lm) =
1

F (c0)J0
Im[ρ](L2

m). (5.22)
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Replacing (5.22) in (5.21) and using (5.17), with 2γ−3/2 replaced by γ, we obtain

‖ρ‖−1,γ+1,L ≤ (L+ γ + 1)√
2|J0F (c0)|

C−1
γ

{
1 +

√
2

Lm√
2γ + 1

||TL2
m
||
}
‖Im[ρ]‖1, γ2 −

1
4 ,L

2
m
.

Therefore, setting

C2 =
(L+ γ + 1)√

2|J0F (c0)|
C−1
γ

{
1 +

√
2

Lm√
2γ + 1

||TL2
m
||
}
,

we obtain (3.9). The proof of Theorem 3.9 is achieved.

6 Numerical reconstruction results

This section is devoted to the proof of Theorems 3.10 and 3.11.

Proof of Theorem 3.10. Let ρ be a function in C0([0, L]), and let us consider the
functions {ϕj}j≥1 defined in (3.13)-(3.15).

First, we note that for all k ≥ 1 we have

ϕk(x) = 0, ∀x /∈ [βkL, βk−1L). (6.1)

Then, we can define the sequence {ψp}p∈N∗ as

ψp(x) =
p∑

j=1

ϕj(x) ∀x ∈ R.

Using (6.1) we have that for all x ∈ R \ (0, L),

ψp(x) = 0 ∀p ∈ N∗,

and hence,
lim

p→+∞
ψp(x) = 0 ∀x ∈ R \ (0, L).

Besides that, we consider the ceiling function

0x1 = min{k ∈ Z
∣∣ k ≥ x},

i.e., 0x1 is the smallest integer not less than x.
Next, we define

k∗(x) =

⌈
ln(x/L)

ln(β)

⌉
∀x ∈ (0, L). (6.2)
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Then, we have
x ∈ [βk∗(x)L, βk∗(x)−1L), ∀x ∈ (0, L).

Therefore, we obtain for x ∈ (0, L)

ψp(x) = ϕk∗(x)(x) ∀p ≥ k∗(x),

and hence,
lim

p→+∞
ψp(x) = ϕk∗(x)(x) ∀x ∈ (0, L). (6.3)

Thus, the series in (3.16) is convergent, i.e. the function ϕ̃ is well defined.
On the other hand, by replacing (3.10) in (2.12) we obtain

βj = β0β
j , j = 1, ...,m.

By using (6.1) we have

ϕ̃(x) = 0, ∀x ∈ R \ [0, L),

and combining with (5.6), we get

Φ̃m[ϕ̃](t/β0) =
m∑

j=1

ajϕ̃(β
jt) ∀t ≥ 0. (6.4)

By replacing t = 0 and t = β0Lm in (6.4), and using (3.11), (3.13), and (3.16),
we obtain

Φ̃m[ϕ̃](0) = g(0), and Φ̃m[ϕ̃](Lm) = g(β0Lm) = 0.

Now, if we take t ∈ (0, β0Lm) = (0, L/βm), we have

βjt ∈ (0, βj−mL), for j ∈ {1, 2, ...,m}.

We need to consider two cases, t < L and t ≥ L.
Case t < L. In this case we have

βjt ∈ (0, L), for j ∈ {1, 2, ...,m},

and
k∗(βjt) = j + k∗(t).

Thus, replacing (6.3) in (6.4), we obtain

Φ̃m[ϕ̃](t/β0) =
m∑

j=1

ajϕj+k∗(t)(β
jt),
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and hence, using (3.15) with k + 1 = m+ k∗(t), we obtain

Φ̃m[ϕ̃](t/β0) =
m−1∑

j=1

ajϕj+k∗(t)(β
jt) + amϕm+k∗(t)(β

mt)

=
m−1∑

j=1

ajϕj+k∗(t)(β
jt) +



g (t)−
m−1∑

j=1

ajϕj+k∗(t)

(
βjt

)




= g(t).

Case t ≥ L. Let us set

k∗(x) =

⌊
ln(x/L)
ln(1/β)

⌋
∀x ≥ L,

where
2x3 = max{k ∈ Z

∣∣∣ k ≤ x},

is the floor function, i.e., it is the largest integer not greater than x. Thus, we have

βk∗(x)+1x < L ≤ βk∗(x)x ∀x ≥ L, (6.5)

and
k∗(βk∗(t)+1t) = 1. (6.6)

Then, we infer from (6.5) that

βjt ≥ L ∀j ≤ k∗(t),

βjt < L ∀j ≥ k∗(t) + 1.

By using (6.4) and (6.3), it follows that

Φ̃m[ϕ̃](t/β0) =
m∑

j=k∗(t)+1

ajϕk∗(βjt)

(
βjt

)

=

m−k∗(t)∑

j=1

aj+k∗(t)ϕk∗(βj+k∗(t)t)

(
βj+k∗(t)t

)
.

From (6.6), we have
k∗(βj+k∗(t)t) = j ∀j ≥ 1,
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and hence, from (3.13)-(3.14), with k + 1 = m− k∗(t), we obtain

Φ̃m[ϕ̃](t/β0) =

m−k∗(t)∑

j=1

aj+k∗(t)ϕj

(
βj+k∗(t)t

)

=

m−k∗(t)−1∑

j=1

aj+k∗(t)ϕj

(
βj+k∗(t)t

)
+ amϕm−k∗(t) (β

mt)

=

m−k∗(t)−1∑

j=1

aj+k∗(t)ϕj

(
βj+k∗(t)t

)

+



g(t)−
m−k∗(t)−1∑

j=1

ak∗(t)+jϕj

(
βj+k∗(t)t

)




= g(t).

It remains to prove (3.18). Replacing (3.11) in (3.17) and using (2.13), we get

Φ̃m[ϕ̃](t/β0) =
Ĩm[ρ](t2/β2

0)− Ĩm[ρ](L2
m)

J0F (c0)

= Φ̃m[ϕ](t/β0)−
Ĩm[ρ](L2

m)

J0F (c0)
∀t ∈ [0, β0Lm] , (6.7)

where ϕ(x) =
∫ x

0 ρ(τ)dτ . Using Φ̃m[1] = 1 and Theorem 3.2 we obtain (3.18),
i.e.

ϕ̃(x) = ϕ(x)− Ĩm[ρ](L2
m)

J0F (c0)
∀x ∈ [0, L] .

This completes the proof of Theorem 3.10.

Proof of Theorem 3.11. Let ρ be a function in C0([0, L]), and let {ϕj}j≥1 be
defined in (3.13)-(3.15). Using (3.18), we obtain

ϕ̃(x) = ϕ(x)− ϕ(L) ∀x ∈ [0, L], (6.8)

where ϕ =
∫ x

0 ρ(τ)dτ and ϕ̃ has been defined in (3.16).
Recall that the family of norms || · ||[a,b) (for 0 ≤ a < b < ∞) satisfies (3.19)-

(3.20). Using (3.16), (6.2)-(6.3) and (6.8), we obtain

‖ϕ(·)− ϕ(L)‖[βk+1L,βkL) = ‖ϕk+1‖[βk+1L,βkL) . (6.9)
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Let us prove that for any k ≥ 0, we have

‖ϕk+1‖[βk+1L,βkL) ≤
C(βm)

ak+1
m

‖g‖[βk+1β0Lm,β0Lm) . (6.10)

The proof of (6.10) is done by induction on k.
Case k = 0. Using (3.13) and (3.19)-(3.20), we have

‖ϕ1‖[βL,L) ≤
C(βm)

am
‖g‖[ββ0Lm,β0Lm) ,

as desired.
Assume now that for all j = 1, ..., k (with k ≥ 1), we have

‖ϕj‖[βjL,βj−1L) ≤
C(βm)

ajm
‖g‖[βjβ0Lm,β0Lm) , (6.11)

and let us prove (6.10).
Case k + 1 ≤ m. Using (3.14) and (3.19)-(3.20), we obtain

‖ϕk+1‖[βk+1L,βkL) ≤
1
am

(
C(βm) ‖g‖[βk+1β0Lm,βkβ0Lm)

+
k∑

j=1

am−k−1+jC

(
βk+1

βj

)
‖ϕj‖[βjL,βj−1L)



 .

Using induction hypothesis (6.11), we have

‖ϕk+1‖[βk+1L,βkL) ≤
1
am

(
C(βm) ‖g‖[βk+1β0Lm,βkβ0Lm)

+
k∑

j=1

am−k−1+jC

(
βk+1

βj

)
C(βm)

ajm
‖g‖[βjβ0Lm,β0Lm)





≤ C(βm)

ak+1
m

(
akm ‖g‖[βk+1β0Lm,βkβ0Lm)

+
k∑

j=1

am−k−1+jC

(
βk+1

βj

)
‖g‖[βjβ0Lm,β0Lm)





≤ C(βm)

ak+1
m



akm +
k∑

j=1

am−k−1+jC

(
βk+1

βj

)

 ‖g‖[βk+1β0Lm,β0Lm) . (6.12)
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Note that
C(u) ≤ 1 ∀u ∈ (0, 1), (6.13)

for C(·) is nondecreasing and C(1) = 1. Therefore,

C

(
βk+1

βj

)
≤ 1 ∀j ∈ {1, ..., k}.

Thus, we obtain

‖ϕk+1‖([βk+1,βkL) ≤
C(βm)

ak+1
m

‖g‖[βk+1β0Lm,β0Lm) .

This proves (6.10) for all k = {0, ...,m− 1}.
Case k + 1 > m. Replacing ϕk+1 by expression in (3.15) and using (3.19)-

(3.20) and the induction hypothesis, we obtain

‖ϕk+1‖[βk+1L,βkL) ≤
1
am

(
C(βm) ‖g‖[βk+1β0Lm,βkβ0Lm)

+
m−1∑

j=1

ajC

(
βm

βj

)
C(βm)

aj+k−m+1
m

‖g‖[βj+k−m+1β0Lm,β0Lm)





=
C(βm)

ak+1
m

(
akm ‖g‖[βk+1β0Lm,βkβ0Lm)

+
m−1∑

j=1

ajC

(
βm

βj

)
‖g‖[βj+k−m+1β0Lm,β0Lm)





≤ C(βm)

ak+1
m



akm +
m−1∑

j=1

ajC

(
βm

βj

)

 ‖g‖[βk+1β0Lm,β0Lm) , (6.14)

and with (6.13) we infer that C(βm/βj) ≤ 1 for all j ∈ {1, ...,m − 1}. This
completes the proof of (6.10).

On the other hand, using (3.17) and (3.20), we obtain

‖g‖[βk+1β0Lm,β0Lm) ≤ C(β0)
∥∥Φ̃m[ϕ̃]

∥∥
[βk+1Lm,Lm)

.

By replacing (6.8) in (6.10), we obtain

‖ϕk+1‖[βk+1L,βkL) ≤ C(β0)
C(βm)

ak+1
m

∥∥Φ̃m[ϕ](·)− Φ̃m[ϕ](Lm)
∥∥
[βk+1Lm,Lm)

,

and by replacing in (6.9), we obtain (3.22). This completes the proof of Theo-
rem 3.11.
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7 Numerical results

In this section we discuss the numerical implementation of the scheme devel-
oped when proving Theorem 3.10.

Firstly, we define {α}mj=1 as in (3.10), and let

Fj =






0 j = 0,

F

(
αj + αj+1

2

)
j = 1, ...,m− 1,

F (c0) j = m,

where F is Hill’s function defined in (1.3). Next, we set

aj =
Fj − Fj−1

F (c0)
, j = 1, ...,m. (7.1)

Since F is increasing and 0 ≤ F (x) < 1 for all x ≥ 0, we infer that aj > 0 for all
j = 1, ...,m, and that

m∑

j=1

aj = 1.

The corresponding approximation Fm of Hill’s function is shown graphically in
Figure 2.

Recall that a non-regular mesh in the interval [0, L] was introduced when prov-
ing Theorem 3.10. Now, let us start defining

Pq,1=
{
(x0, x1, . . . , xq) ∈ Rq+1: xj ∈ [βL,L), x0=βL, xj−1 < xj , ∀j=1, ..., q

}
,

and its representative vector

P1 = (x0, x1, . . . , xq) ∈ Rq+1.

Next, introduce the sets

Pq,j =
{
x
∣∣∣ βj−1x ∈ Pq,1

}
, j ≥ 1,

and denote their corresponding representative vectors by

Pj = βj−1P1 = βPj−1 ∈ Rq+1.
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Figure 2. Hill’s function and its approximation

Let us fix some p ≥ 1. Our aim is to recover the function ρ on the mesh

Σp,q = ∪p
j=1Pq,j , (7.2)

where the corresponding representative vector is given by

P = (P1,P2, . . . ,Pp) ∈ Rp+q+1.

By using (3.13)-(3.15), we can define the vectors G1,G2, ...,Gm ∈ Rq+1 induc-
tively as follows:

(G1)s =
1
am

g

(
(P1)s
βm

)
, s = 1, ..., q + 1, (7.3)

and for k = 1, ...,m− 1:

(Gk+1)s =
1
am



g

(
(Pk+1)s

βm

)
−

k∑

j=1

am−k−1+j(Gj)s



 s = 1, ..., q + 1.

(7.4)



Ca+ channel distribution 35

Finally, we define the vectors Gk ∈ Rq+1 for k = m, ..., p− 1, by

(Gk+1)s =
1
am



g

(
(Pk+1)s

βm

)
−

m−1∑

j=1

aj (Gj+k−m+1)s



 s = 1, ..., q + 1.

(7.5)
Introduce the vector

G = (G1,G2, · · ·,Gp) ∈ Rp+q+1,

which represents a discretization of the function ϕ̃ given by Theorem 3.10 on the
mesh defined by Σp,q,; that is, ((P)s, (G)s)

p+q+1
s=1 is a discretization of the curve

(x, ϕ̃(x)), x ∈ (0, L).
Therefore, using (3.18) and applying a forward difference scheme, we obtain

an approximation of the curve (x, ρ(x)), x ∈ (0, L), through the vectors X,Y ∈
Rp+q given by

(X)s = (P)s, (Y)s = max
{
(G)s+1 − (G)s
(P)s+1 − (P)s

, 0
}

s = 1, ..., p+ q. (7.6)

It should be noted that the maximum function was considered in (7.6) because of
the positivity restriction on the density function.

7.1 Examples

Let us consider

ρ(x) =
8a8x7

(x8 + a8)2 , ϕ(x) =

∫ x

0
ρ(τ)dτ =

x8

x8 + a8 , (7.7)

with a = 1.5. Figures 3 and 4 show functions ρ(x) and ϕ(x) defined in (7.7) and
their approximations obtained by the previous procedure.

——————-
——————

Remark 7.1. If we consider any discretization of (2.4) on a given mesh, one has
to solve a system like

A.y = .g.

Obviously, the system depends strongly on the choice of the mesh.
We notice that the matrix A may not be invertible. While it is difficult to give a

general criterion for the invertibility of A in terms of the mesh, Theorem 3.10 guar-
antees that the matrix A is indeed invertible when the non-regular mesh described
in (7.2) is used for the discretization of system (2.4).
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Figure 3. The target function ρ and its approximation.

Figure 4. The target function ϕ and its approximation.

Let us now consider the example studied in [6]. To this end, we define

I(t) =






0, t ∈ (0, tDelay),

IMax

[
1 +

(
KI

t− tDelay

)nI
]−1

, t > tDelay,

(7.8)
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with tDelay = 30[ms], nI ( 2.2, IMax = 150[pA] and KI ( 100[ms]. The
current given in (7.8) is a sigmoidal function with short delay (Figure 5B), which
is similar to the profiles encountered in some practical situations (see e.g., [1], [3]
or [11]).

A: approximation of ρ. B: current I(t) as defined by (7.8)

Figure 5. Approximation of the function ρ(x) with current I(t) as defined by (7.8)

The numerical solution corresponding to these data is shown in Figure 5A. It
should be noted that the numerical solution given here is perfectly consistent with
those obtained in [3].

8 Polynomial approximation of Hill’s function

In this section we consider the same inverse problem with another approxima-
tion of the kernel in (2.2), for which we keep the function c and replace Hill’s
function F by a polynomial approximation around c0.

More precisely, let Pm be the standard Taylor polynomial expansion of degree
m of (1.3) around c0; that is, Pm ∈ R[X], deg(Pm) ≤ m and

F (x) = Pm(x− c0) +O(|x− c0|m+1). (8.1)

A new approximation for the kernel is defined by

PKm(t, x) = Pm(c(t, x)− c0), (8.2)

where c(t, x) is the solution of (2.3), given by

c(t, x) = c0 − c0

(
2
L

) 1
2
(

+∞∑

k=0

e−µ2
kDt

µk
ψk(x)

)
, (8.3)
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with
µk =

2k + 1
2L

π, (8.4)

and

ψk(x) =

(
2
L

)1/2

sin(µkx). (8.5)

Besides, we define the total current associated with this polynomial approximation
as follows:

PIm[ρ](t) = J0

∫ L

0
ρ(x)PKm(t, x)dx ∀t > 0. (8.6)

Next, we present our main result regarding the operator PIM : L2(0, L) →
L∞(0,+∞); it asserts that the identifiability for the operator PIm holds when
m ≤ 8.

Theorem 8.1. Let m ≤ 8 be a given integer. Then

Ker PIm = {0},

where
Ker PIm =

{
f ∈ L2(0, L)

∣∣∣ PIm[f ](t) = 0 ∀t > 0
}
.

8.1 Proof of Theorem 8.1.

We can without loss of generality assume that J0 = 1. Let us start noting that
{ψk}k≥0 is an orthonormal basis in L2(0, L). Thus, for any f ∈ L2(0, L), we can
write

f(x) =
∑

k≥0

< f, ψk > ψk(x) in L2(0, L), (8.7)

where

< f, ψk >=

∫ L

0
f(x)ψk(x)dx.

We write
Pm(z) = α0 + α1z + · · ·+ αmzm,

where αj ∈ R, for all j = 0, 1, ...,m, and introduce the set

Λm =






k∑

j=1

µ2
nj

∣∣∣nj ≥ 0, 1 ≤ k ≤ m




 . (8.8)
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Let ε > 0 be a given positive constant. For any ρ ∈ L2(0, L) and for all s ≥ 0,
we have

PIm[ρ](ε+ s) = α0

∫ L

0
ρ(x)dx

+
m∑

j=1

αj(−c0

√
2
L
)j
∫ L

0




∑

k≥0

e−µ
2
kD(ε+ s)

µk
ψk(x)




j

ρ(x)dx

= α0

∫ L

0
ρ(x)dx

+
m∑

j=1

αj(−c0

√
2
L
)j

∑

k1,...,kj≥0

e

−

j∑

p=1

µ2
kpD(s+ ε) ∫ L

0
(Πj

p=1
ψkp(x)

µkp
)ρ(x)dx.

Note that the convergence of the last series is fully justified, as for any j ∈
{1, ...,m} and any s ≥ 0, we have

∑

k1,...,kj≥0

e

−

j∑

p=1

µ2
kpD(s+ ε) ∣∣∣∣

∫ L

0
(Πj

p=1
ψkp(x)

µkp
)ρ(x)dx

∣∣∣∣

≤ ||ρ||L1(0,L)




∑

k≥0

√
2
L

e−µ2
kDε

µk




j

< ∞, (8.9)

Therefore, there is a family {aλ(ε, ρ)}λ∈Λm such that
∑

λ∈Λm

|aλ(ε, ρ)| < ∞, (8.10)

and

PIm[ρ](ε+ s) = α0

∫ L

0
ρ(x)dx+

∑

λ∈Λm

aλ(ε, ρ)e
−λDs ∀s ≥ 0. (8.11)

Lemma 8.2. Let ρ ∈ L2(0, L) be a given function, such that

PIm[ρ](t) = 0 ∀t > 0. (8.12)



40 C. Conca, R. Lecaros, J. H. Ortega and L. Rosier

Then ∫ L

0
ρ(x)dx = 0, (8.13)

and
aλ(ε, ρ) = 0 ∀λ ∈ Λm. (8.14)

Proof. First, the series in (8.11) is uniformly convergent for s ≥ 0, by (8.10).
Define {λk}k≥1 as

λ1 = min
{
λ ∈ Λm

}
, λk+1 = min

{
λ ∈ Λm \ {λ1, ..., λk}

}
, (8.15)

and note that this defines an increasing sequence 0 < λ1 < λ2 < · · ·
Using definition 8.15, we can rewrite (8.11) as

PIm[ρ](ε+ s) = α0

∫ L

0
ρ(x)dx+

∑

k≥1

aλk
(ε, ρ)e−λkDεe−λkDs ∀s ≥ 0.

(8.16)
Set

Sj(s) =
∑

k≥j

aλk
(ε, ρ)e−λkDεe−λkDs ∀s ≥ 0.

Then we have that

|Sj(s)| ≤ e−λjDs




∑

k≥j

|aλk
(ε, ρ)| e−λkDε



 . (8.17)

Plugging (8.16) into (8.12), it follows that

α0

∫ L

0
ρ(x)dx+ S1(s) = 0 ∀s > 0. (8.18)

Passing to the limit as s → +∞ in (8.18), and noting that α0 = F (c0) /= 0 and
that S1(s) → 0 by (8.17), we obtain (8.13).

The proof of (8.14) is done by induction on j ≥ 1.
Case j=1. Plugging (8.13) in (8.18) and multiplying by eλ1Ds, we obtain

aλ1(ε, ρ)e
−λ1Dε + eλ1DsS2(s) = 0 ∀s > 0. (8.19)
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But, using (8.17), we also have that

|eλ1DsS2(s)| ≤ Ce−(λ2−λ1)Ds.

Thus, noting that λ1 < λ2 and passing to the limit as s → ∞ in (8.19), we obtain

aλ1(ε, ρ) = 0.

Case j=n+1. Assume that

aλj (ε, ρ) = 0 ∀j = {1, ..., n}. (8.20)

Plugging (8.20) and (8.13) in (8.12), we infer that

aλn+1(ε, ρ)e
−λn+1Dε + eλn+1DsSn+2(s) = 0, ∀s > 0. (8.21)

On the other hand, using (8.17), we have that

|eλn+1DsSn+2(s)| ≤ Ce−(λn+2−λn+1)Ds.

Thus, noting that λn+1 < λn+2 and passing to the limit as s → ∞ in (8.21), we
infer that

aλn+1(ε, ρ) = 0.

This yields (8.14). This complete the proof of Lemma 8.2.

Lemma 8.3. Let {µk}k≥0 be the sequence defined in (8.4). Assume that

µ2
n1

+ · · ·+ µ2
nk

= µ2
n. (8.22)

for some k ≥ 1 and n, n1, ..., nk ≥ 0. Then

k = 1 mod 8. (8.23)

Proof. We have

µ2
n =

π2

4L2 (4ϕ(n) + 1),

where ϕ(n) = n2 + n. Thus, substituting this expression of µ2
ni

in (8.22) yields

k + 4
k∑

i=1

ϕ(ni) = 1 + 4ϕ(n).

Noticing that ϕ(n) is an even number for all n ∈ N, we obtain (8.23).
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Proof of the Theorem 8.1. Let ρ ∈ L2(0, L) be a given function such that (8.12)
holds. From Lemma 8.2 we infer that (8.14) holds. If m ≤ 8, using Lemma 8.3
we have that for all n ≥ 0, all k ∈ {2, ...,m}, and all n1, ..., nk ≥ 0,

µ2
n1

+ · · ·+ µ2
nk

/= µ2
n.

Then, with λ = µ2
n ∈ Λm, we obtain

aµ2
n
(ε, ρ) = e−µ2

nDεα1(−c0

√
2
L
)

∫ L

0

ψn(x)

µn
ρ(x)dx.

Since α1 = F ′(c0) /= 0 (F being increasing), we infer that

< ψn, ρ >= 0, ∀n ≥ 0,

and hence, with (8.7), that
ρ = 0.

This completes the proof of Theorem 8.1.

Corollary 8.4. Let m ≤ 8 be a given integer. If ρ ∈ L2(0, L) is such that

PIm[ρ](t) = 0 ∀t ∈ (0, δ),

for some δ > 0, then
ρ ≡ 0.

Proof. It is sufficient to notice that the map t → PIm[ρ](t) is analytic on (0,+∞),
and to apply Theorem 8.1.
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