Bienvenue sur la page du projet ANAÉ, financé par l'ANR


"Analyse asymptotique des équations aux dérivées partielles d'évolution"



    Le projet ANAÉ a pour référence ANR-13-BS01-0010-03.



    Membres du projet




    Le projet


  • Étude en grand temps de solutions d'équations hamiltoniennes non-linéaires

  • Formes normales pour des EDP et pour l'équation des vagues

  • Dynamiques non-linéaires d'équations hamiltoniennes

  • Équations à données initiales aléatoires

  • Phénomènes d'explosion pour des EDP en dimension supérieure
      Pour plus de détails, voir le résumé du projet




    Résultats liés au projet


  • From semiclassical Strichartz estimates to uniform L^p resolvent estimates on compact manifolds
    Nicolas Burq, David Dos Santos Ferreira, Katya Krupchyk. arXiv:1507.02307

  • Long time dynamics for damped Klein-Gordon equations
    Nicolas Burq, Geneviève Raugel, Wilhelm Schlag. arXiv:1505.05981

  • Laplace eigenfunctions and damped wave equation II: Product manifolds
    Nicolas Burq, Claude Zuily. arXiv:1503.05513

  • Concentration of Laplace eigenfunctions and stabilization of weakly damped wave equation
    Nicolas Burq, Claude Zuily. arXiv:1503.02058

  • Remarks on the Gibbs measures for nonlinear dispersive equations
    Nicolas Burq, Laurent Thomann, Nikolay Tzvetkov. arXiv:1412.7499

  • Exponential decay for the damped wave equation in unbounded domains
    Nicolas Burq, Romain Joly. arXiv:1408.6054

  • Boundary observability of gravity water waves
    Thomas Alazard. arXiv:1506.08520

  • Control of water waves
    Thomas Alazard, Pietro Baldi, Daniel Han-Kwan. arXiv:1501.06366

  • Gravity capillary standing water waves
    Thomas Alazard, Pietro Baldi. arXiv:1405.1934

  • The cubic Szegö equation and Hankel operators
    Patrick Gérard, Sandrine Grellier. arXiv:1508.06814

  • Multiple singular values of Hankel operators
    Patrick Gérard, Sandrine Grellier. arXiv:1402.1716

  • The cubic Szegö equation with a linear perturbation
    Haiyan Xu. arXiv:1508.01500

  • Unbounded Sobolev trajectories and modified scattering theory for a wave guide nonlinear Schrö dinger equation
    Haiyan Xu. arXiv:1506.07350

  • Finite degrees of freedom for the refined blow-up profile of the semilinear heat equation
    Van Tien Nguyen, Hatem Zaag. arXiv:1509.03520

  • Existence of a stable blow-up profile for the nonlinear heat equation with a critical power nonlinear gradient term
    Slim Tayachi, Hatem Zaag. arXiv:1506.08306

  • Construction of a stable periodic solution to a semilinear heat equation with a prescribed profile
    Fethi Mahmoudi, Nejla Nouaili, Hatem Zaag. arXiv:1506.07708

  • Blow-up results for a strongly perturbed semilinear heat equation: Theoretical analysis and numerical method
    Van Tien Nguyen, Hatem Zaag. arXiv:1410.4079

  • Construction of a stable blow-up solution for a class of strongly perturbed semilinear heat equations
    Van Tien Nguyen, Hatem Zaag. arXiv:1406.5233

  • On invariant Gibbs measures for the generalized KdV equations
    Tadahiro Oh, Geordie Richards, Laurent Thomann. arXiv:1509.06873

  • Invariant Gibbs measures for the 2-d defocusing nonlinear Schrödinger equations
    Tadahiro Oh, Laurent Thomann. arXiv:1509.02093

  • On global existence and trend to the equilibrium for the Vlasov-Poisson-Fokker-Planck system with exterior confining potential
    Frédéric Hérau, Laurent Thomann. arXiv:1505.01698

  • Modified scattering for the cubic Schrödinger equation on product spaces: the nonresonant case
    Benoît Grébert, Éric Paturel, Laurent Thomann. arXiv:1502.07699

  • KAM for the non-linear Beam equation 2: A normal form theorem
    Hakan L. Eliasson, Benoît Grébert, Sergei B. Kuksin. arXiv:1502.02262

  • KAM for the nonlinear beam equation 1: small-amplitude solutions
    Hakan L. Eliasson, Benoît Grébert, Sergei B. Kuksin. arXiv:1412.2803

  • KAM for for KG on S^2 and for the quantum harmonic oscillator on R^2.
    Benoît Grébert. arXiv:1410.8084

  • On the continuous resonant equation for NLS: II. Statistical study
    Pierre Germain, Zaher Hani, Laurent Thomann. arXiv:1502.05643

  • On the continuous resonant equation for NLS: I. Deterministic analysis
    Pierre Germain, Zaher Hani, Laurent Thomann. arXiv:1501.03760

  • Asymptotic behavior of the nonlinear Schrödinger equation with harmonic trapping
    Zaher Hani, Laurent Thomann. arXiv:1408.6213

  • On random Hermite series
    Rafk Imekraz, Didier Robert, Laurent Thomann. arXiv:1403.4913