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Abstract : We study a coupled fluid-structure system. The structure corresponds to a part of the
boundary of a domain containing an incompressible viscous fluid. The structure displacement is modeled
by an ordinary differential equation. We prove the local null controllability of the system when the control
acts on a fixed subset of the fluid domain.

1 Introduction.

Controllability for fluid-structure systems has been studied recently. In a series of papers, J.P. Raymond
and M. Vanninathan prove null controllability for different kinds of linear coupled systems modeling,
with an increasing difficulty, fluid-structure interaction in 2D. The fluid is modeled respectively by the
Helmholtz equation [11], the Heat equation [13, 12] and the Stokes equation [14].

In [3], A. Doubova and E. Fernandez-Cara consider a 1D interaction problem of a particle in a fluid
modeled by the Burgers equation. They prove null controllability for the linearized model and then local
null controllability for the nonlinear system.

Very recently, M. Boulakia, A. Oxel in [2] and O. Imanuvilov, T. Takahashi in [5] prove independently
local exact controllability for a system modeling a rigid body moving in a viscous incompressible fluid
described by the Navier-Stokes equations in 2D with a control acting in a fixed subset of the fluid domain.

In this paper, we are interested in the null controllability of a system coupling the Navier-Stokes
equations and an ordinary differential equation (see equations (1.7)—(1.6)). More precisely, we prove that
for any time 7" > 0 and any initial data small enough, we can find a control acting in a subdomain of the
fluid part such that the solution of our system vanishes at time T (see Theorem 1.3).

The systems in [3, 2, 5] deal with nonlinear fluid equations. The strategy of the different proofs is
quite the same. First, a change of variables sets the problem in a fixed domain. Then, the different
authors prove that the obtained linearized system is null controllable with some control. Finally, a fixed
point procedure gives the local null controllability.

The way used to prove the controllability of the linear [11, 13, 12, 14] or the linearized [3, 2, 5] systems
is based on the duality between the controllability of a system and the existence of an observability
inequality for the adjoint system. Such an observability inequality relies in fact on a Carleman estimate.
The proofs of Carleman estimates are really tricky and not straightforward.

1.1 The system.

We consider a viscous incompressible fluid in a two dimensional domain. The boundary of the domain
is split into two parts. One part is fixed, the other one is a moving beam. At rest, the beam is in its
reference state I'§ = (0, L) x {1}, where L > 0 is the characteristic length of the beam. The domain of
the fluid at rest is denoted €. Then its boundary I'y is the union of two curves I'j and I'. We suppose
that the boundary I'y is smooth, that is at least C*.

The displacement of the beam is given by a function n depending on the time ¢ and on the position
x in the reference state I'§. Then, a priori, the function 7 is from (0, +00) x (0, L) in R. For any ¢ > 0,
the moving boundary given by the displacement 7 is

Loy = {(x,y) €R?st. x€(0,L)and y =1 +n(t,x)}.



Then, the fluid at time ¢ occupies a domain noted €2, ;) which has for boundary 9, =T' Ff](t)'
We have the following assumption on the displacement

Je > 0 such that V¢t € [0,T] Vx € (0,L) 1+n(t,z)>e>0 (1.1)

to ensure that, for every time ¢, €, is a connected domain.
Let us introduce some notations. We fix a time 7" > 0, then

Q% = (OaT) x Qo, Q’?" = U {t} X Qn(t)a Yr= (OvT) x I
te(0,T)

20 =0,T)xTg, 237 = |J {t}xTy, % =(0,7) x I,
te(0,T)

Following the model in [8, 1, 7], the velocity u and the pressure p of the fluid in the domain Q7. are
described by the Navier-Stokes equations

u+ (u-Vju—dive(u,p) = 0 (Q7)
divu = 0 (Q7)
u = mper (E77) (1.2)
u =0 (X7)
u0) = u’ (20)

In this equation, the term o(u,p) is the Cauchy stress tensor defined by
o(u,p) = —pl + V(Vu + (Vu)T).
The coefficient v > 0 is the viscosity of the fluid. Finally, e; and e, are the two vectors of R?
e = (1,007, ey =(0,1)T.

Remark 1.1. Due to the incompressibility condition of the fluid, solutions (u,p) of system (1.2) and the
Dirchlet boundary condition n.es satisfy, for any time t,

| v = [ RCECE [ w0

n(t) o
The vector n(t) is the unit normal to 0,y outward Q. It is fived on T and is given on F;(t) by

1
n(t) = \/TW ( —n(t)e; + 62).

Thus, we will consider functions n in

Li(TS) = {u € LX) s.t. /FO = 0} .

We assume that the displacement of the beam is a Galerkin approximation of the Euler-Bernoulli
beam model. Thus, the function 7 is of the form

N
n(t,x) = qu(t)(k(ac), for z € (0,L) and t > 0 (1.3)
k=1

where N is a fixed integer greater than 1. The familly ({)x=1,.. ~ is a Hilbertian basis of LE(T3) (see
Remark 1.1). For each k > 1, (x belongs to C*°(T'§; R) and satisfies

C(x) =0, ((z)=0 for z=0,L.



The unknown ¢(t) is a N x 1 vector,

at) = (aa(t), -~ an ()",
which satisfies the following ordinary differential equation:
7'()+ Aqt) = T | —o(up)(—neer+e2) -]
T
= (/ *U(U,p)(* nzer + ez) : Ck62> (1.4)
s k=1,..N

(9(0).4'(0)) = (¢°q")-

In this equation, A is the symmetric positive matrix defined by

A:(/F

Iy is the projection from L3(T'§) to RY. Then, Iy satisfies, for every f in L3(T'§),

T
= ([ ar o [ )

(aCk,mCl,m + ﬁCk,zCl,z)> ;

s
0 kl=1,....N

Introducing M the R2*Y matrix, M = <C1927--~7<N92> = ( é) CO ), we have a quite simplier
1 e N
notation for the right-hand side of (1.4):
q'(t) + Aq(t) = — MTa(u,p)< —nge1 + e2>.

L3

The displacement we consider can be seen as a Galerkin approximation of the one in [1, 10, 7]. Indeed,
let us introduce the following partial differential equation, called beam equation:

Nt + aMsnmmcz - /677II = s [J(Uap)(fnfﬂel + eQ) ' 62:| (07 T) X FS
n = 0 (0,T) x {0, L} (1.5)
N = 0 (0,T7) x {0, L}

The coefficients @ > 0 and G > 0 are respectively the rigidity and the stretching of the beam. The
operator Mj is the projection from L?(I'§) onto LZ(T) defined by

Msp = p— Vi € LA ().

ol ARG
05l Jrg

We use the trace 7, defined by
1 - .
YsP = Ms(P\Fg) =DPIr; — |1_‘9|/ D|rg Vp € H(Qp) with o > 1/2.
ol Jry

Let us define the operator (A, 5, D(Aq,5)) on L3(I'§) by

D(Ayp) = {,u € HY T NL3(TY) s.t. p(z) = pe(x) =0 for z =0, L},
Aaplt = aMgfigpeys — Blize for all p € D(Aq ).

We can easily see that (A, g, D(Aq 3)) is @ symmetric positive operator. We denote {()\k, Ck)}k its
>1

pairs of eigenvalues-eigenfunctions satisfying first ¢, € D(Aq,g) for all k£ > 1 and second

Aa,ggk = M forall k>1,
= > t.
(Ck7Cl>L2(Fg) 0 for k,1>1st. k#1,
— > .
(Ck’g)m(rg) Sk for all k,1>1



Then, the family (¢;)x>1 constitutes a Hilbertian basis of L2(I'§). Furthermore, each (j, for k > 1 belongs
to C*°(T'§; R) as sums of exponential functions.
With a direct calculation, we can verify that the right-hand side of the beam equation (1.4) is

O'(uap)< —Nz€1 + 92) €2 =p— 2VU27y — Vg (uLy + u2790> :
Using the projection Ily, it becomes
1IN [p — 2uu27y} —vily [% (Ul,y + uQ@.)} .

The first term is linear in the variables (u,p,q) whereas the second is quadratic in the same variables.
Then the finite dimensional beam equation is

¢"+Aq = Iy {P - 2Vu2,yj| —vily [7795 (ul,y + Un)],
(9(0),4'(0)) = (¢°,q")

We set a control c in a subset w of the fluid domain. In assumption (1.1), we can take ¢ such that
the set w will never touch the boundary Ff](t). For that, let us suppose that

(1.6)

sup y <e.
(z,y)€w

This is a physical issue because the domain w is supposed to be in the fluid part of the domain and the
control force cannot be out of the domain.
Denoting Z(x) the 1 x N vector Z(x) = (Cl ()., CN(:C)), we have equivalently

n(t,x) = Z(x)q(t), for x € (0,L) and t > 0.

The equality of the velocities on the boundary becomes u = n,es = Z¢'es. Then, the equations of the
fluid part are:

u; + (u-V)ju—divo(u,p) cxo  (QF)
divu = 0 (QF)
u = Zde (23") (1.7)
u = 0 (Er)
u0) = u° (Qy0)

The function y,, above is the indicator function of the domain w.

1.2 Functional setting.

In the fixed domain €y, we define the classic Hilbert space in two dimensions L2(Qg) = L?(Q;R?) and
in the same way the Sobolev spaces H*(Qg) = H*(Q0; R?). We denote

V(Qp) = {u € H(Q) ; divu =0 in Qo}.

Then we define
H”7(Q7) = L*(0,T;H%(Q)) N H(0,T;L*()),

VoT(QF) = L*0,T;V7(0)) N HT(0,T; V().
We need a definition of Sobolev spaces in the time dependent domain €2, ;:

Definition 1.2. We say that u belongs to H™ (U, (o, {t} xH? (1)) (respectively to H (Uye (o ) {t} ¥
Vo Q) if

e for almost every t in (0,T), u(t) is in H7(Qy ) (resp. in V7 (L)),

ot [l ) (resp. t = [u(b)llvoa,) is in H (0, T;R),



We finally define

HT(Q}) = L? U {t} x H? () | (H" U {t} x L () | »
t€(0,T) t€(0,7T)
vor@p) = P U B xVi( Q) |NE | U 8 x V()

te(0,T) te(0,T)

The pressure term p is defined in the Navier-Stokes equations up to a constant: only the derivatives
of p appears in (1.7). Then, we define the space H (o) by

H () = {p € H?(Qp) such that / p= ()} .
Qo
We will look for p in L? (Ute(&T){t} x H? (Qn(t))> (see Definition 1.2).

1.3 Main result.
The aim of this paper is to prove the following result of null controlability of the system (1.7)—(1.6):

Theorem 1.3. Let T > 0. Let (u°,¢°,¢") be in VI(Q,0) xRN xRY satisfying the compatibility condition
u’ = Zqg'e, on I2o and u’ =0 on I'. Then there exists r > 0 such that if

[0®llvia,0) + 1a°x + gt [y <7

then the system (1.7)—(1.6) is null controllable at time T in (u,q,q'). That means exactly there exists
c € L*(0,T;L%(w)) such that

u(l)=0, ¢(T)=0 and ¢(T)=0.

Like the other results of controllability of nonlinear coupled systems already mentioned in the intro-
duction, the first step of the proof is to use a suitable change of variables to set the system in a fixed
domain without changing the domain w of the control. This change of variables and the equivalent system
are introduced in the Section 1.4. Then, in section 2, we prove the null controllability for the linearized
system with nonhomogeneous right-hand sides using a duality method and a Carleman estimate. The
proof of the Carleman estimate is postponed to section 4. Section 3 is devoted to the proof of Theorem
1.3. It relies on a fixed point procedure.

1.4 The system in a fixed domain.

We suppose that the rectangle Ro = (0, L) x (0,1) is included in the domain €, see Figure 1.

The change of variables is

6,5 : Qn(t) I QO

¥yt
1—e+n(t )
z=1y otherwise.

z=e+(1—¢) ifo<z<Lande<y<l1l+n(tz)

(z,y) +— (x,z) with



Figure 1: The domains o (on the left), €, ) (on the right) and Reo.

Setting f(z,z) = f(x,y), we can calculate the derivatives of f(z,y) using the derivatives of f(z,z) in
(0,L) x (&,1):

fo = fim(z—e)—" _f.

A 17757+77A
fm = f_rl—(27€)mfza
_6 ~
fy = mfz’ 2
B ) - ) N N (1 — €+77)77za: - 7]3 ¢
foz = fmx_2(z_6)1—€—|-77fm+<(2_6)1—€+17> fzz_(Z—5> (1—c+n)2 Jzs
B (1—e)?
fw = Tt

Now, we state the system satisfied by u(z, z) = u(x,y) and p(x, 2) = p(x, y):

flt —div U(ﬁ, A) = éXw + F[fLﬁ, 77] (Qg’)
diva = divw|a,n)] (@)
a = Zde (E;’O)

a =0 (X7)

a0) = a° ()

with F[a, p,n] = —(a- V)i
in (0,L) x (g,1), we have:

—(u-V)u, ¢ =cand w[a,n] =0 for (z,2) € 2\ (0,L) x (&,1). For (z,z)

(t ) = L —nu (z—¢)n (z—¢) 7277926 - u
F(t,z,z) = + | (2 +v(z rx 2
Y 1—¢ K k 1l—ec+n 1

(z—¢)nz —n(l—¢)
l—e+n =

(= = s — mp)er — (1— e+ Mty + (2 — ity — (1 — s)agmz)

+ v {—2(2’ — E)nwﬁg;z + nﬁxz +

and
1 . N
w(t,z) = T (—ntie1 + (z — e)ngties) .
(1.8)
The change of variables gives us a new formula for the right-hand side of (1.6):
My [ — 2vits,2] + hl, ]
where
Wi o] = iy (i i, — 2 ) (1.9)
w,n =v —— iy F Npliny — ——— 2, | . .
n N1+771, Nz U2, 141 2,



With the identification (1.3), we can use the notation h[Q,q] = h[Q,7n] and the same for F[a, p, q] and
w(a, ¢]. To simplify the notation, we drop out the symbol * and we get the following system:

- diVO’(u,p) = CXw T F[ u,p,q ] (Q%)
divau = divw[u,q] (QOTg
u = Zde, 2
u oq Ez )) : (1.10)
¢'+Aq = Ty|p—2vus.| +hfuq (0,7)
(u(0),9(0),¢'(0)) = (u’,¢"q")

A way to solve the system (1.10) is to find a equivalent problem with divergence free (see [1, 7]). Due
to the expression of the nonhonmogeneous divergence term div w, we look for a solution u of (1.10) under
the form u = v + w. The new system in the variables (v, p, q) is

- diVU(V,p) = CXuw Tt F[ w,p,q ] (Q%)
divv = 0 Q%)
v = Zde (£7%)
vCo SO (1.11)
¢"+Aq = Tlyp+ hlu,q] (0,7)
(v(0),4(0).¢'(0)) = (u®—w(0),¢° ¢")
Indeed, the formula of w(u, g] gives us directly that w(0) = 1= (—n°ule; + (z — e)nlules) only depends

on (u’,¢° ¢') and that w(u,¢];r = 0 for (u,p,q) solution of the system (1.10). Furthermore, the term
Iy { - 21/02,2} does not appear in the right-hand side of (1.11), because if v in H*!(Q%.) is solution of

(1.11) then divv = 0 and v; = 0 on I'g, which together give that vz, = 0 on I'j.
In system (1.11), F and h are defined by

F[L‘Lp, Q] = F[u,p, Q] + VAW[u7q] - w[u, q]ta E[ua q] = h[u7(ﬂ - 2Vl—IN |:w2,z[u7 Q]:| (112)
with
v=uvie; +ve; and wlu,q] =wifu,gle; + walu,gles.

From now on, we denote
v0 =u’ — w[u, ¢](0). (1.13)

On the other hand, we have to add a compatibility condition at time ¢ = 0 for (v", ¢°, ¢'):

div(v®) = 0 ()
vV = Zqles (T§) . (1.14)
vi =0 )

For (u’, ¢° ¢') the compatibility conditions are

div (uo + = (Z¢"uler — (2 — €) Z,q"ules) ) =0 (Qo)
uO — Zq e (F(S)) (115)
uw =0 (I



2 Null controllability of the linearized system with nonhomoge-
neous right-hand sides.

Fixing intial data (v°,¢°, ¢') and right-hand sides (F, %), our goal in this section is to prove the null
controllability of system (2.1).

—dive(v,p) = cxo+F (Q(:)F)
divv = 0 (Q%)
v = Zdes (59
M Oq ) (zﬁ) . (2.1)
¢"+Aq = HOyp+h (0,7)
(v(0),¢(0),4'(0)) = (v°.¢° ¢")

This section is split into three parts. First, in section 2.1, we introduce an auxiliary linear system
and we state a result of controllability for this system under some assumptions. In section 2.2, we set
system (2.1) in the abstract general setting of the previous section. Then, in the last section, we prove
the controllability of system (2.1).

2.1 An auxiliary result.
This part is adapted from [5]. We consider the following abstract linear system:
2 (t) = Az(t) + Bu(t) + Jf(t), 2(0) = 2°. (2.2)

Here, U, H, F are Hilbert spaces and A is an unbounded linear operator generator of an analytic
semigroup on H denoted (e'?);>. B and J are two linear continuous operators respectively from U into
H and from F into H, 2" is an element of H.

Let us introduce weight functions p; (i = 1,2, 3) defined by

pi - [0,T] — R continuous functions satisfying p;(T) =0, p;(t) >0Vt € [0,T). (2.3)

Then, we define three time-dependent weighted function spaces §, 3 and 4 by

§ = {feL?0,T;F)st. p11f€L2OTF},
3 = {z€L*0,T,H)st. py'z€ L*(0,T;H)},
U = {uelL?0,T,U)st. pyluec L*(0,T;U)}.

In this general abstract setting, we prove the following lemma:
Lemma 2.1. We have the equivalence between
(i) For any v in L*(0,T; H), the solution ¢ of
—¢'(t) = A" (t) + (1), ¢(T) =0 (2.4)

satisfies the estimate
T T T
16(O)Z + / AT 0I5 < C ( / RO 3 + / p§<t>|B*¢<t>||%> L @28)
0 0 0

(ii) For any (2°, f) in H x §, there exists u in 3 such that the solution z of (2.2) belongs to 3.

Proof. Remember that the general form of solution for system (2.2) can be written via the Duhamel
formula

¢ ¢
2(t) = et 420 + / (=94 By(s)ds + / et=9)A 7 f(s)ds
0 0



which can also be written

t t
z(t) — / =94 By(s)ds = et420 + / =94 1 f(s)ds.
0 0

We introduce two operators L and Mr as follows
Lr: Hxg§ — L*0,T;H)
t
(2% f) — (t s el 420 —|—/ e(t_S)AJf(s)ds>

0

and
Mr: 3x4 — L*0,T;H)

(z,u) +— <t — z(t) — /t e(ts)ABu(s)ds) .
Then, condition (i7) of the Lemma is equivalent to i
Range L+ C Range M.
This last inclusion is equivalent to the existence of a constant C' > 0 such that
IL7% |l rxgr < ClIMzall3wa  for all ¢ € L*(0,T; H). (2.6)
The spaces §', 3’ and U’ are the dual spaces of §, 3 and 4:

§ = {feL*0,1,F)st. pif € L*(0,T;F)},
3 = {2€L*0,T,H)st. ppz€ L*(0,T;H)},
U = {uelL?0,T,U)st. psuec L*(0,T;U)}

with the identifications H = H', F' = F and U = U’.
By a simple calculation, we get, for ¢ solution of (2.4),

Ly: L*0,T;H) — HxgF, M;: L*0,T;H) — 3 x.
v o— (9(0),J79) v — (¥,B"9)
Then, (2.6) becomes

T
l6(0) 113 +/O P e@)E < C (/0

which is exactly (2.5). O

T

T
P30 Ilv ()13 +/ p?(t)IIB*QS(t)II?J) ,
0

Then, we have the following stronger result:

Theorem 2.2. Under the hypothesis of Lemmma 2.1, assume that (i) holds. Then we can define a linear
operator Ur from H x § into L by

Ur: Hxg — U
(2% f) = ugop,

such that the solution z of system (2.2) corresponding with the control u .o yy belongs to 3.
Moreover, if 2° belongs to D((—A)Y/?) and if there exists po in C*([0,T];R) such that
po(t) >0 Vte (0,T) and po(t)=0<=t=T,
Pl 120,T) fori=1,2,3, P8I c 1°°(0,T) for j =1 orj=2,
Po Po
then, z satisfies
€ (0,7 D(-A) N H (0.3 H) N C([0,T): D((—4)'7%)),
0
with the estimate

z

< 0 .
- < C (1N pg-ayprm + 1 £15)

L2(0,T5D(—A))NH (0,T;:H)NC([0,T]; D((—A)*/2))



Proof. We begin by proving the existence of the bounded linear operator Ur. Assuming condition (%) in
Lemma 2.1, we know that there exists for any initial data z° in H and right-hand side f in § at least a
function v in Y such that z belongs to 3. Now, we consider the following functional

1 1
() = 11 + Sl

Then, we can find among all the previous control u, the one minimizing this functional, with the corre-
sponding z. Thanks to the observability inequality, a direct calculation gives that this control w satisfies
the estimate

@l < (120 + 1£15)

Denoting @ = Up(2°, f), then Ur is a linear operator from H x § into 4. Furthermore, it is bounded
thanks to the previous inequality.
The second part relies on the following classical proposition:

Proposition 2.3. Let A: D(A) C X into X where X is a Hilbert space and A an operator generator
of an analytic semigroup on D(A) with a compact resolvent in X. If Y° belongs to D((—.A)'/?) and B
belongs to L?(0,T;X), then equation

V'(t) = AY(t) + B(t), Y(0) =)°

admits a unique solution ) in L*(0,T; D(A))NH(0,T;X)NC([0,T]; D((—A)Y?)). Furthermore, we get
the estimate

V1 20,7 D(A)NH 0,5%)nC (0,71 D((—A)1/2)) < C(”yOHD((f.A)l/?) + ||BHL2(0,T;X)>~
Because u(,0 5y, f and 20 belongs respectively to L?(0,T; H), L*(0,T; F) and D((—A)*/?), we can

apply the previous proposition and we get that that the solution z of (2.2) belongs to L?(0,T; D(—A)) N
H'(0,T; H)nC([0,T]; D((—A)'/?)). Futhermore, dividing equation (2.2) by po, we obtain

! / 0
z z o ( z ) z
(Po) (p()) po P Po © po(0)
I
Then, we get that (pio) belongs to L?(0,T; H) provided that = belongs to L?(0,T; D(—A)). From the
previous lemma, we have p% in L2(0,T; H); second, from the choice of the function pg, we have
PO Pop2 %
TREE T T -
Po Po P2

which belongs to L?(0,T; H). Then, applying Proposition 2.3 to system (2.8), we get that
€ I}(0.T; D(=A) N H (0,75 H) N €([0, T D((-4)"/%))
0
with the estimate

z

Po

< C(1° p—ayrm + If1l5)-
L2(0,T5D(—A))NH(0,T;H)NC([0,T];D((—A)/2))

2.2 Equivalent system.
In this section, we fix the initial data (v°,¢°, ¢*) in X{, defined by

X9 =HY(Q) x RN x RN

10



and
X0 = {(zo,ko,kl) € X° such that (z°, k%, k') verifies (1.14)}.

The space X° is equipped with the norm
0 1.0 1.1 02 /27,012 12 \?
1, k0K o = (12l ) + 147K+ R )
The right-hand side (F, ) belongs to the time-dependent weighted function space Wr (see below). Let

us define
V =V%Qy) x RN x RV (2.9)

equipped with the norm

2
|voa.)|| = IVIEe a0 +1472aln + Il for all (v,q.7) € V.

We introduce the spaces

Wr = {(G,g) € L*(0,T;L%(Q) x RY) s.t. p; *(G, g) belongs to L*(0, T; L*(p) x RN)},
Zr = {(z,r) st. (z,7,7") and p; *(z,r,7’) are in LQ(O,T;V)}7
Ur = {d € L2(0,T;L2(w)) s.t. p3'd is in L2(0,T; LQ(w))}.

These spaces are equipped with the norms

T
IClw, = [ rO[IGORq, +la0f]a forall (.0 € W1,
T
Iz = [ sl ol for all (2,1) € Zr.
0
T
ldw, = /Opgz(t)Hd(t)H%z(w)dt for all d € Uy

We now write system (2.1) as a first order in time linear partial differential equation. Let us introduce
the so-called Leray projection P from L2(p) in V2(Q) where

Vg(Qo) = {u € L2(Qo) such that u-n=0o0n I'y and diva =0 in QO}.

We split system (2.1) using the equality v = Pv + (I — P)v. Let us denote v, = Pv and vy, = (I — P)v.
Each part of the velocity field v is associated with a corresponding pressure term p. and ps. We have
the following proposition:

Proposition 2.4. System (2.1) can be splitted into two systems. One, system (2.10), is an evolutionary
system in the variables (v, q1,q2) (where ¢ = q and g2 = ¢') and the other, system (2.11), is a stationary
system giving (Vs, De,Ds) as functions of (Ve,q1,q2). That is system (2.1) is equivalent to (2.10)—(2.11)
(see the notation below):

!/

Ve AO 0 (—Ao)PDS Ve
@ = K 0 0 In @
G2 VIINN(A() -n) —A 0 g2
PF P(cxw) (2.10)
+ K, 0 + 0
Myn(F)+h Hy7mo(Cxw)
(ve(0),q1(0),42(0))" = (Pv%¢%¢")"
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and secondly

ve = VNi(Zgy) (Q7)
Pe = NLAVE ‘n) Q%)
ps = 7(F)+molexw) —No(Zgy) (QF) (2.11)
P = Pe+ps (Q%)
Vo= Vet v, Q%)
)

Furthermore, system (2.10) is exactly under the form of system (2.2).

Proof. We use a method due to Raymond (see [9]). In particular, we adapt here the decomposition of a
similar system made in [10]. We write it in this paper for sake of completness. From the Stokes system

vi—vAv+Vp = cxo+F (Q%)
divv = 0 Q%)
v = Zde (Z?O) ,
v = 0 (ET)
v(0) = v° (€20)
we get the following equivalent system
Ver— VAV, +Vp, = P(cxw)+ PF Q%)
Ve = —71Vs (2(1)“)
ve(0) = Pv° (€0)
Vs = VJ\IS(Z(I/) (Q%) . (2.12)
bs = W(F) +7TO(CXw) _NS(ZQN) (Q(Z)“)
vV = VetV (Q%)
P = DPs+Pe (Q(Z)“)

In (2.12), we denote N;(-) = N'(-xrs) where A the operator from H?(I'g) to H7+3/2(Qy) (for 0 > —1/2)
defined by r = N (j) for j in H°(T'p) if and only if

Ar = 0 in Qg, ﬁ = 7 only.
on
and 7 and my are operators from L2(£) into H'(Qg) defined by

A’IT(E) = divF (Q) . Amglex,) = diviexw) (Q0)
(’)7(;(:‘) — Fom (D) an {%Oéixw) _ 0 (o) (2.13)

We have an explicit formula for 7 and 7g:
7(F) = —(—=Ap) N (divF) + N((F + V(~Ap) *(divF)) - n),

mo(exw) = —(=Ap) "M (div(exw)) + N ((V(-Ap) ™! (div(exw))) - n),

where 11 = —(=Ap)~1(g) if and only if m € H} () and Amy = g in Qq for any g € H= ().
From the first equation in (2.12), we get that p. satisfies for any time ¢ in (0,7):
Ope (t)

Ap.(t) = 0 in Q, o = vAv(t) on Ty,

that is p. = vN'(Av, - n).
In conclusion, p = ps + p. is equal to

p=m(F)+ m(cxw) — Ns(Z2q") + UN(Av, -n) in Q.

Then the beam equation becomes

(In + TUNNs(Z ()" + Ag = vIINN (Av, - n) + T y7(F) + [yme(cxe) + h.
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System (2.1) is equivalent to system

Vet — Av.+Vp. = Plexw) + PF (Q(Z)“)
Ve = —77Vs (E%)
ve(0) = PvY (Q0)
Vs = VMS(ZC]/) (Q(Z)“)
= Nz Q. ey
(In + NN (Z()g" + Aqg = VIINN(Ave -n) + T yn(F) + Iymo(ex,) +h  (0,T)
(¢(0),¢'(0)) = (¢°¢")
V. = Vet Vg (Q(Z)“)
P = Ps+pe Q%)

From this system, we can obtain an evolution equation. Indeed, (ve,q,q’) is uncoupled to (v, pe,ps)-
Then, we have first, with obvious notation ¢ = ¢; and ¢’ = ¢o:

!’

Ve AO 0 (—AQ)PDS Ve
an = K 0 0 In 7
G2 VIINNV(A() -n) —A 0 )
PF P(cxw) (2.15)
+K 0 + 0
Oy7n(F)+h IIymo(exw)
(ve(0),a1(0),2(0))" = (Pv®,¢°,¢")"

and secondly

Vs = VNS(ZCD) (Q%)
Pe = NLAVe ‘n) (Qg“)
ps = m(F)+mo(exn) —No(Zaz) (Q7) (2.16)
P = Petbs (@)
vV = vV.+ Vg Q%)
where K, an isomorphism from V9 (Qg) x RY x R¥ into itself defined by
Id o0 0
K,=| 0 Iy 0 , (2.17)

0 0 (Iy+TyNo(Z()

Ayp is the Stokes operator defined by D(Ag) = V2(Qg) N V() in V2(Qp) and Agz. = vPAz,, for all
z. in D(Ap). The operator Ds is a lifting of the nonhomogeneous Dirichlet condition v = Zgses on T
defined from RY into V2(Qq) for 7 in R by z = D,r if and only if there exists a function p in H* ()
such that

7Z/AZ —+ Vp = 0 (Qo)
divz = 0 (Qo)
z = Zrey (T9)
z = 0 ()

We finally get that system (2.10)—(2.11) is equivalent to system (2.14), that is system (2.10)—(2.11) is
equivalent to system (2.1).

We now can identify notations from (2.10) with those from the previous section. The Hilbert spaces
H, U and F are now respectively

Vo =V2Q) xRY xRN, L%*w) and L*(Qp) xRV,

The operator A in (2.2) is remplaced by

Ao 0 (—Ao)PD,
A=K, 0 0 In
VIINN(A() -n) —A 0
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which is defined from
D(A) = {(ze,ql,qg) € V3(Qo) N V) x RY x RN s.t. 2z, = =, VN,(Z¢) on I‘O}

in V,. We have
B: L*(w) — V, B
P(cxw) F\ = —
CXw +H— ( 0 ’ J(h)J1F+J2h
(In + NN (Z(-))  Tnmo(exw)
with
— Vi J: RV — v,
F — K, (PF,0,Iym(F)" ho— K. (0,0,h)"

This gives, with f = (F, h) in L2(£) x RY,

Jf = (PF, 0, (In + TN (Z())) " [HNW(F) + E} )T .

Finally,
T
z = (Veaqh(IQ)T and ZO = (onaqoaql) .

2.3 Null Controllability of system (2.1).
We can now state the main result of this section:

Theorem 2.5. Let (v¥,¢°, ¢%) bei'ngfgc. There exists a linear bounded operator Ur from V x Wr into
L?(0,T;L?(w)) such that for all (F,h) in Wy the solution of system (2.1) associated with the function

c=Ur ((VO, @, q"), (F, E)) in the right-hand side belongs to Xr defined by

Xr = {(x,m,7) € X7 ;py ' (x,m,7) € X1} equipped with the norm || (x,7,7)|x, = Hpal(x,ﬂ',r)HxT

where X7 = H>1(QY) x L2(0,T; H*(Q0)) x H?(0, T;RYN). Furthermore, we have the estimate:

1.2, < C (I 0°, 0N x0 + IF- By, ).
That is, system (2.1) is null controllable at time T > 0:
v(T)=01inQy, q(T)=0 and ¢(T)=0.

The proof of this proposition relies on the two previous sections. First, thanks to section 2.2, system
(2.1) is equivalent to system (2.10)—(2.11). Then, we can apply results of section 2.1 to system (2.10).
Finally, this results and an observability inequality finish the proof.

First, we want to write Lemma 2.1 for system (2.10). Thus, we have to calculate the adjoint operators
A*, B* and J*.

Lemma 2.6. We define the bilinear form ¢ on V, by

¢<(V67 qi, qZ)a (ye7 ]€1, kZ)) = (Vev ye)L2(Qo) + (A1/2q17 Al/le)RN + (Q27 (In + HNNS(Z(')))kQ)RN’

for (Ve,q1,q2) and (ye,k1,ke) in Vyu. Then, ¢ is a scalar product on V,,. We still denote V,, the space
Va endowed with this scalar product. In the following, we set

<" '>Vn = ¢(’ )
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Proof. We have to prove that the operator IIyN,(Z-) : RY — R¥ is symmetric and positive. Let us take
g2 and ky in RN we calculate (qo, 1NN, (Zks))rny. By definition, the function a = N,(Zky) belongs to

, Aa = 0 (Q0)
H=(Qg) and satisfies da
(fo) n Zkaxry (To)
the previous notation
(g2, UNN(Zk2))rn

Second, an integration by parts gives
b
(Ab,a)r2(0y) = —(Vb, Va)rz(q,) + o’
)
That is, because Aa = 0 and Ab = 0 in €,
ob )
-—,a = (Vb, Va)Lz Qo)
(an La(ry) (©0)

Putting all the calculations together, we get

(g2, INNs(Zk2))rn

or

(Zq2,a)2(rs)

()
—,a )
I/ pary)

(b,Aa)2(0y) = —(Vb, Va)r2(q,) + (b,

(Vb, VCL)L2 (Qo)

(TINNs(Zq2), k2)rn

(va Va)L"’ (Q0)*

da

on

. In the same way, we denote b = N;(Zqz). First, with

)L2<r5> '

To prove the positivity, we calculate (ga, 1NN, (Zgo))rny for gz in RY. With the previous equality, we

obtain

(g2, NN (Zg2))rwv = I VD][32 (0

which concludes the proof.

O

Proposition 2.7. - The operator A is a generator of an analytic semigroup on Vy,. Furthermore, it

has a compact resolvent. The adjoint operator A* is given by D(A*)

Id 0 0
A" = 0 In 0

0 0 (In+IOxNs(Z()) !

- The operator B* is defined from V,, into L?(w) by

B*| n = (ye + VN(Z712)) Xw-

T2

VIIyN(A(Y) - m)

The operator J* is defined from Vy, into L2(Qp) x RN by

Ye

JN o | = ((ye + VNS(ZTQ)),rQ).

T2

Ao
0

D(A) and

(=Ag)PDy

0
0 —In
A 0

Proof. The first point of the proof can be easily adapted from [10, Section 3.] and is left to the reader.
We now prove the second point. Let d be in L?(w) and (y.,r1,72) be in V,,, then, by definition of B,

Ye
<Bd, 1 > = (Pd,ye)vo(ay) + (TInmo(d), r2)pn .

T2 v,



By an integration by parts, we have

0
(10(@): Ay = ~(Vro(). Valuzcay + (@) 52) (2.18)
1/ 12(990)

Denoting ¢ = Ny(Zrs), from equation (2.18), we obtain

0
(HNW()(CI),T'Q)]RN = (’/To(d), Z’I’Q)LZ(QO) = <7T0(d), 6q> = (V’]T()(d)7vq)L2(QO).
L/ 12(990)

Then, setting y = y. + V¢, we see that y is an element of V°(Q) satisfying
y-n=Zry on I, y-n=0on I}
and furthermore, thanks to the definition of mo(d) (see (2.13)), we have d = P(d) + Vmo(d). Thus,

(v, D)2y = (Ye+ Vg, P(d) + Vmo(d))L2(0p)
(Ye; P(d))r2(00) + (Vq, Vo(d))L2(00) + (Ve, Vo(d)) L2 (o) + (Vg, P(d))L2(00)-

To conclude, we see that y. and P(d) belong to V9 () whereas Vq and Vo(d) belongs to (V2(0))*.
Then,

(y7d)L2(Qo) = (yea P(d))LZ(Qo) + (VQv Vﬂ-O(d))LQ(Qo)'
Finally, putting all this calculations together, we get

Ye
<B(d), & > = (d,¥)r2(00) = (d,¥)L2(0)-
T2 v,

That is B*, the adjoint operator of B, is defined from V,, into L?(w) by

Ye
B* T1 = (ye +VNS(ZT2))X(JJ
T2
We directly deduce J* from the calculations above. O

Then, we have the following proposition:
Proposition 2.8. The two following statements are equivalent:

(i) For all (a.,b,c) in L?(0,T;Vy), the solution (y., ki, k2) of equation

" (t) A o (t) I (t)
—| Kk t) = 1 ke t) + b t
ko ko c (2.19)
(ye(T), k1 (T)’ k2(T))T = (07 0, O)T

satisfies the inequality
T
1300, k1 (0) k2O, + [ 40
0
T 2 T 2 2
< C (/0 pa(t) | (ac(t),b(t), c(t) Iy, +/0 p3(t) lye +VNS(Zk2)IIL2<w>> :

—

Iye + VN(Zh2) T2 ) + ol

(i) For all ((on,qo,ql), (F,E)) in Vyu x Wr, there exists a control c in Ur such that the solution
(Ve,q1,q2) of (2.10) belongs to Z5 with

Z5 = {(xe,rl,rg) € L*(0,T;Vy,) s.t. pgl(xe,rl,rg) € LZ(O,T;VH)}.
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Using the same idea as in section 2.2, we get that there exists a pressure term 7 such that (y, 7, k1, k2)
defined from (y., k1, k2) solution of (2.19) by y = y. + VN, (Zks) is solution of the system

—yi—divo(y,m) = a (QF)
divy = 0 (QF)
y =0 (E7)
y = Zkses (=59 (2.20)
K, = ky—b (0,T)
klz + Ak’l = —HN’]T —C (07 T)
(y(T)a kl(T)a k?(T)) = (0’070)

with a = a. + VN;(Z¢). System (2.20) is exactly the adjoint of system (2.1). Furthermore, with the
notation y =y, + VN (Zks) for (ye, k1, k2) in Vy,, we have first that (y, k1, k2) belongs to V and second

that
2

= Iyellfeiao) + 1A ?k13n + (k2, (In + TINNL(Z-)) o)y
1¥11E2 ) +lf41/2/f1|fw + |k fn
H(y 1, ko) Y

(see this calculation in the proof of Lemma 2.6 above).
Finally, Proposition 2.8 can be written in term of system (2.1) and its adjoint (2.20) as follows:

H(}’e; k17k2)‘

n

Proposition 2.9. The two following statements are equivalent:

(i) For all (a,b,c) in L*(0,T;V), the solution (y,m, ki, ks) of system (2.20) satisfies the inequality:

(50010 2:0) [+ [ 19 + ol

T T
< c( | Aolao.pe.copa+ | p%(t)||y(t)||i2(w)>.

(ii) For all (v°,q°, ¢%) in'V and all (F,h) in Wr, there exists ¢ in Ur such that the solution (v,p,q) of
system (2.1) satisfies (v,q) € Zr.

We set here the result on the observability inequality.

Theorem 2.10. We introduce the weight functions (p;)i=01,2,3

po(t) e_S.TS‘S*(t)7

pi(t) = (sNJY2(0"(0)2e ), 2.21)
p2(t) = )\5/2815/4(0*(t))15/4e—sd*(t), .
p3(t) = pa(t).

where o* and 6* are given at the end of section 4. Then, there exists C > 0 such that all the smooth
solutions (y,m, k1, ko) of system (2.20) with any right-hand side (a, b, c) in L?(0, T; V) satisfy the inequality

(010t + [ (191 + o]
= </T O (0. 40). )+ | Tp§<t>||y<t>||iz<w>>

for s and A large enough (s > § and \ > 5\)

The proof is postponed to section 4 and relies on a Carleman inequality. Now, we are able to prove
the main result of section 2.3.
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Proof of Theorem 2.5. Thanks to Theorem 2.10, condition (i) of Proposition 2.9 is satisfied. Then, we
can apply Theorem 2.2 to system (2.10). That is, there exists a bounded linear operator U§ from V, x W

into Ur such that the solution (ve,qi,q2) of system (2.10) associated with ¢ = U% ((on7 @, q"), (F, E))
belongs to Z5%. Using (2.11), we get that v belongs to

25 = {xs € L2(0,T; L2(Q)) s.t. py ' x, € L2(0, T L2(QO))}.

This gives together that (v,q1,q2) € Zr. Then, denoting Er the linear bounded operator from V x Wr
into V,, x Wr defined by

Br((v".¢".a). (F.B)) = ((Pv".q".q"), (F. ).

we get that Ur = U% o Er is the linear bounded operator of the proposition.
Furthermore, for (v, ¢% ¢') in X2, we get that (Pv°,¢°, ¢") belongs to D((—A)/2) = V1(Q) x

RY x RM. Applying now the second point of Theorem 2.2 to system (2.10), we get that py ' (Ve,q1,q2)
belongs to

L2(0,7; D(~A)) 1 H'(0,T3 V) ([0, T]; D((—A)/2))
= V2QY) x H'(0,TiRY) x H'(0,TsRY) N (0, T); VA(Q) x BY x BY).

Then, using (2.11), we get that pal(vs,pe,ps) belongs to
2
(H21(Q%) ne(0, 7] H! () x [L2(0,T; H' ()
Finally, v = v, + vs, p = ps + pe and q satisfy
v pp v € HXHQ7) NC(0, T HY (),
1p7 palp € L2(OaTaH1(QO))7
¢ d, 00 pod € H'(0,T;RY).

That is, thanks to the embedding H'(0,T;RY) — C([0,T];RY) and the definition of py (especially,
po(T) = 0), that we have the null controllability of system (2.1):

v(T) =0, in Qo and q(T) =4 (T)=0.

3 Proof of Theorem 1.3.

In this section, we prove Theorem 1.3. First, we use the previous section to prove the theorem in the
cylinder (0,7) x Q. Then, we will derive Theorem 1.3 from this result using the change of variables
introduced in section 1.4.

3.1 In the cylinder (0,7) x .
First, we begin by proving the null controllability of system

u; —divo(u,p) = cxo+F Q%)
divu = divw Q%)
u = Zqe (559
u = 0 : (E;) . (3.1)
" +A4Aq = Tn|p-— 21/u27z] +h (0,7)
(u(0),4(0),4'(0)) = (¢ q")
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Because u' is not divergence free (see (1.15)), we do not have (u% ¢°,¢') in the space V. Thus, we

introduce another Hilbert space
L =L%(Q) x RN x RV,

In system (3.1), the right-hand side (F,w, k) belongs to
Wr = {(G,z,g) € Wr s.t. pTH(G, (—A)z, 2/, g) belongs to L2(0, T; [L2(20)]* x RN)}

equipped with the norm

T
G,z 9)w, = /O 101_2(t)|:H(G(t)7(_A)Z(t)aZl(t))||[2L2(Qo)]3 +lg()[av|dt  for all (G,z,g) € Wr,

where
Wy = {(G,z,g) € L2(Q%) x H21(QY) x L2(0,T;R") such that z = 0 on FO}.

Remark 3.1. Conditions % € L*>(0,T) and % € L*>®(0,T) in (2.7) for j = 1 or j = 2 give respectively
0
the equivalence between
Aw w' w
—,—cL*Q}) and — eH>'(QF)
P P Po

and A ,
Y cQ)) and  — e H2Y(QY).
P2 P2 Po

Then, we have the following result:

Proposition 3.2. Let (u°, ¢, ¢') be in X° satisfying (1.15). There exists a linear bounded operator Ur
from L x Wr into L?(0,T;L?(w)) such that for all (F,w,h) in Wr the solution of system (3.1) associated

with the function ¢ = Up ((uo, @, q"), (F,w, h)) in the right-hand side belongs to Xr. Furthermore, there
exists a constant C; > 0 such that

9.y < € (10, q o + [P, ) o )- (32)
That is, system (3.1) is null controllable at time T > 0
u(T)=01inQy, q(T)=0 and ¢(T)=0.
Proof. Let us define the operator K1 by

Kr: L x Wr — V x Wy

where v0 is defined by (see (1.13))
v? =u’ — w(0)

and (F,h) are defined from (F,w,h) as follow (see (1.12))
F =F +vAw — wy, E:h—ZUHN[sz}.
The operator Kt is clearly linear. Moreover it is bounded

| Ko (000", (Fow, 1) )|

IN

(10, a" a")ll + W0 2 (0) + IF.7) vy, )

VxWr
et )

IN

]LXWT '

Indeed, w belongs to H*(Q%.) — C([0,T]; H'(Q0)), then [w(0)|lL2(00) < CII(F, w, k)|,
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Then, thanks to the existence of a bounded operator Ur from VxWr into L2(0,T; L%(w)) used in The-
orem 2.5, we get by composition a linear bounded operator Uz defined from L x Wr into L2(0, T; L2(w)).

The fact that the solution (u,p, q) of (3.1) associated to ¢ = UT<(uO, @, "), (F,w, h)) belongs to Xp
comes exactly from Theorem 2.5 and u = v + w. Indeed, by construction, the solution (v,p,q) of (2.1)
corresponding with (v?, ¢°, ¢') and (F, h)—both obtained from (u°, ¢°, ¢!) and (F, w, h)—and associated
toc = Ur ((uo,qo,ql),(F,w,h)> =Ur ((vo,qo,ql),(Fﬁ)) belongs to X7. Moreover, as w and >
belongs to H*!(Q%.) (see Remark 3.1 and the definition of pg in (2.7)), we have first (u,p, q) = (v+w,p, q)
belongs to X7 with the expected estimate and second, thanks to w(T') = 0, that

u(T) =01in Qg and q(T) =4 (T)=0.
O

From now on, the initial data (u’, ¢°, ¢') is fixed in X and satisfies (1.15). The time 7' > 0 is fixed
too. We want to prove the controllability of the system written in the fixed domain (1.10). We use a
fixed point procedure based on the result for the linearized system (3.1).

Lemma 3.3. Let (u,p,q) be the solution in Xr of the system (3.1) for the intial data (u®,¢% ¢%) in
XO satisfying (1.15) and right-hand sides (F,w,h) in Wr, then (F,W,h) = (F[u,p, q], w[u, ¢, h[u,p, q))
defined by (1.8) and (1.9) belongs to Wr and there exists a constant Cy such that

1(F, 5, B)llwy < Co(1+ [[(w,p, @) 2) ]| (0, 2, 9)1%, (3-3)

Furthermore, let (w;,p;,q) (i = 1,2) be solutions in Xr of system (3.1) with the same initial data
(u®,¢% ¢*) in XO satisfying (1.15) and repectively right-hand sides (F;,w;, h;) (i = 1,2) in Wr. If
(wi, pi,qi) (i = 1,2) satisfies for some R > 0,

[(wi, pi, @) 2 < R,
then, we have the estimate
|(F1, W1, h2) — (F2, W2, ho)llwy < Co(1+ R)R| (a1, p1,q1) = (2,02, 2)l| 2, (34)
where (F;,w;, hi) = (Flw, pi, ;], Ww,, i), hlug, ¢;]) (i = 1,2).
Proof. First, pg and ps defined in (2.21) satisfy Z—é € L*°(0,T;R). Then, with this, the proof is a

consequence of the definition of the right-hand sides F, W in (1.8) and h in (1.9).The estimate of the
Wr-norm of (F, W, h) is tedious but straightforward from Proposition 6.1 in |7]. O

Proposition 3.4. Let (4,p,q) in Xr be a solution of the control problem of system (3.1) associated
with (u°,¢% q'), (F,w,h) in Wr and the control c = Ur ((uo,qo,ql), (F,W,h)) in L2(0,T;L%(w)) (see
Proposition 3.2). Then, system

u, —dive(u,p) = cxo +F@pq (QF)
divu = divw[a,7 (Qng
u = Zqde (33
u =0 ! (E;) (3:5)
¢"+Aq = Iyp+hug (0,7)
(u(0),4(0),¢'(0)) = (u’¢%q")

is null controllable at time T, that is there exists a control
¢ = Ur ("¢, q"). (F[a, .7, wlu, 7], h[a,7]))

in L?(0,T;L?(w)) such that the solution (u,p,q) of system (3.5) corresponding with c belongs to Xt and
satisfies
u(T) =0 in Q, q(T) =0, ¢ (T)=0.



Furthermore, the triplet (u,p, q) satisfies the estimate

I, D)1, < Ca (100 % a0 + Co(1 + 18,5, D) v ) 15,5, 0) 1, )
In other terms, we can contruct a mapping

CT : XT — XT
(U,p,9) — Cr(u,p,q) = (u,p,q) is the solution of the control problem for system (3.5)

which satisfies the estimate
ler@ B DI, < G (10 a) o + Co(1+ (8,5,0) )| (8.5 D) %, ). (3.6)

Proof. The proof relies on Proposition 3.2 and estimate (3.3) in the previous lemma. The constants Cy
and Cy are defined respectively in (3.2) and (3.3). O

We now are able to state the main result of this section:

Proposition 3.5. Let (u’,¢°, q') be in X° satisfying (1.15). Then, there exists r small enough such
that, under condition

1(u®,¢% q")llxo <7,
system (1.10) is null controllable at time T > 0, that is there erists a control ¢ in L*(0,T;L?(w)) such
that system (1.10) associated with this control ¢ admits a solution (u,p,q) in Xr satisfying
u(T)=0inQ, q¢T)=0, ¢(T)=0.

Proof. For (u%,¢°, ¢') in X° as above, we denote r = [|(u’, ¢", ¢*)|| xo and R = 2C;r (with C; defined in
(3.2)). We choose r such that Cor(1 +2C 7)) =1 (with Cy defined in (3.3)), that is

1 1
2030y

r

—.
I+ e
Then, we define a ball of the space X of radius R as follows:

xft ={(@p.r) € Xr s |(2.0.7) | < R}

Then, Cr is a contraction mapping in XF. Indeed, for two triplets (u;,p;,q;) in X7, by definition of
Cr, we get first that Cr(u;,pi,q;) (i = 1,2) is solution of the control problem of system (1.10) corre-
sponding with initial data (u°,q°,q'), right-hand sides (F[u;, p;, ¢;], w[us, ¢:], h[u;, ¢;]) and the control

ci = UT((uO,qo,ql), (Flw, pi, @i, wlwg, @il h[“iaQi]))- This means that Cr(u;, p;, ¢;) (i = 1,2) satifies

R R
ICr(wi, pis gi)llxy < 5 + 5 = R
2 2
Furthermore, the difference Cr(uy, p1,¢1) —Cr(ug, p2, g2) satisifies by linearity system (1.10) with (0,0, 0)
for initial data and (Fy,wy,hs) — (Fa,wa, ho) for right-hand sides. Then, via the estimates (3.2) in
Proposition 3.2 and (3.4) in Lemma 3.3 and the choice of r, we have

1
||CT(111,]91’Q1) - CT(UQ,pQ,(h)HXT < 5”(111,]91,(11) - (uz,pQ,(D)HXT-

For r chosen as above, Cr is a contraction mapping from XIE into itself. Then, using the Picard-Banach
fixed point theorem, this mapping admits a fixed point (@, p,§) in X7 solution of the control problem
(1.10) corresponding with initial data (u°,¢°, ¢') in X2, right-hand sides (F[q, 7, ], w[, §|, k[, ¢]) and
the control ¢ = Ur ((uo, @, q¢"), (F[u,p,q,wla,dq),ha, q~])) That is exactly (1, p, ) is a solution of (1.10)
in Xt and satisfies:

G(T)=0in Q, GT)=0 and §(T)=0.
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3.2 In the moving domain.

In this section, we have to check the conditions on the change of variables. That is we have to prove that
the change of variables
o Q — Qn(t)
(,2) — (2,9)

is well-defined as a C'—diffeomorphism from Qq into €, for every ¢ in [0,7] and that condition (1.1)
is checked. The regularity of ¢ and of the functions {; (k = 1,...,N) gives together with the formula
of change of variables in section 1.4 that ¢; is a C! —diffeomorphism. We just need to check assumption
(1.1). Since n(t,x) = Zq, n would satisfy the hypothesis (1.1) if we have an estimate on ¢ like

1—¢
[P e —
OTED =3[ Z] 0.1

Indeed, the maximum of the function 7 in E?O can be roughly bounded by
||U\\Lm(z;0) < ||Z||L<>°(Fg)||QHL°°(0,T)-

Then 1+ n(t, z) > ¢ for (t,z) € £5° if 17l e (5220 < 1 — €. Because of the following estimate
T
q/

. < O(l(®, ¢, ¢")llxo + (B, w, 1)),

H'(0,T;RN)

gl o.rmny < c]

if both the conditions ||(u’, ¢°, ¢')||xo < r and (F,w,h) € Wr such that
[(F,w, h)|lwy <7
are satisfied then
2(1—¢) 1—¢
3120,y ~ I Zllz~0,1)

lgllzo= 0, r;rvy < 2CT <

for r small enough and the hypothesis (1.1) is checked. That is, up to the change of parameter r; defined
by

) ( 1 1—¢ )
rir=min(r, —————
C 3| Zl|L=(o,n) )

instead of 7 in the previous section, we have the result of Theorem 1.3 and in the same time the assumption
1.1 is checked.

To conclude, we can remark that the control c stated in Theorem 1.3 is exactely the one obtained by
the fixed point procedure in section 3.1. Indeed, the change of variables does not change the subdomain
w where the control acts. In other words, we have, with obvious notations, ¢;(c) = c.

4 Proof of Theorem 2.10.

Our goal is to prove an observability inequality for the system

—y; —divo(y,7) = a Q%)
divy = 0 Q%)
y = Zke (239
y =0 (ZT) (41)
ki = ka—0 (0,7)
klz = —Akl - HNT(' —C (O, T)
(y(T),k1(T), k2(T)) = (0,0,0)

The proof of Theorem 2.10 is split into different steps. This steps can be found either in [13, 14] or
in [4]. Let us detail the strategy of the proof.
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Step 1. In section 4.1, we set a first Carleman estimate for the system.

Step 2. In sections 4.2 and 4.3, we get rid of the pressure term and local integral terms of the right-hand
side of the previous Carleman estimate via the method of Fernandez-Cara, Guerrero, Imanuvilov
and Puel in [4] itself using [6].

Step 3. Following [14], we get rid of the integral in k; in the right-hand side of the Carleman estimate
obtained in the previous step (see section 4.4).

Step 4. In section 4.5, we derive the observability inequality from the last Carleman estimate.

The different steps above are very classic in the proof of Carleman estimates. They can be found in
details in the papers cited above, especially in [4, 14]. More precisely, step 1 can be adapted from [4,
section 2|, [14, section 3] or [5, section 3]. Steps 2 and 4 are derived from [4] respectively from Steps 3, 4
& 5 in section 2 and from the beginning of section 3. As already mentionned, step 3 is directly adapted
from [14, sections 6 & 7].

We begin with some notations. Let ¢ be a C%(Qq) function satisfying

o(x) > 0, for all z € Q, |Vo(x) 0 forall x € Qp\ wo,

| >
op(x) = C for all z € T, Ond(x) < 0 forall x €Dy, (4.2)
Onp(z) = -1, forallzely, Agp(z) = 0 forallxely.
We define for a large parameter A > 1, the functions
eM@+mdlleo) .
t) = ————
k(z) = e Ae@Fmldle) g e Q)

where K7 > 0 is a constant such that K; > 2||¢||e. We set next ¢y (z,t) = % and p(z,t) = e?r (@)
where k is a constant number such that & > 2. The number &k will be fixed to 4 in section 4.3, following
[4, 14, 5.

Let us define z(x,t) = p~°(z,t)y(z,t). System (4.1) written in the variables (z,, ki, k2) is

M1Z + MQZ = fs (Q%)

divz = —sVpy-z (Q%)

z = pZkey (23
z = 0 (37) (4.3)

ki = kao—0 (0,7)

k‘é + Ak = Iym—c (0,7)

(40), k1 (0), k2(0)) = ((T), ka(T), Bo(T)) = (0,0,0)
with

Mz = 7' —2s0Vp), - Vz and Moz = sphz —vAz— s°v|Vp, |z, (4.4)

fs = pPa—p °Vr+sv(Apy)z.
Indeed, the calculation of p~* (8t — z/A) p°z = —p~°V7 + p~%a give the differents terms above from

p 5A(p°z) = 2 |Vpr|*z + sApaz + 25VzVpy + Az and p *0(p°z) = sOyprz + 7.

4.1 First Carleman Estimate.

After some calculations, and using the estimate

T T T
/ p;%(kg@wml/%l@w)so{ | e iy + [ p;28<|Al/2k1|§N+|c§N>},
0 0 0

we obtain the following Carleman estimate:
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Theorem 4.1. For X large enough, there is so(\) > 0 such that for all s > so(A\) and for all the solutions
(z, k1, k2) of (4.3), we have

8—1/ f_l(|Z/|2+|AZ‘2)+/ |M1Z|2—|—/ |M2Z|2+/ p_25|V7r|2
Q% QY Q% Q9

T

T
+s/\2/Qo §|Vz|2—|—53,\4/(D?0 €3|Z|2+53>\3/2 0§3p_25|Zk;2|2—|—/ p;28<|k§|ﬁw+|z41/2k1|ﬂ2w)
7 0
T T T

T T
< c [ [ormmatesnt [ P [k )+ [ |Hm§w]
Q% w1 % (0,T) 0 0
(4.5)
where wg CC wy CC Q.
4.2 First treatment of the pressure term integral.

We need to get rid of the term | Q9 p~2%|V7|? in the righ-hand side of the previous inequality. We follow
T

the idea of [6, 4]. First, we consider ws such that wy CC wy CC w. We take 7 (defined up to an additive
constant) such that [ (t) = 0 for almost every ¢ in (0,7). Then, after some calculations and using the
equality Vr = y; + vAy + a, we have the following inequality:

AY2 1120+ [Kal2N)

T
I(S,)\,g) < C 83)\4/ §3|Z|2+S5/2/ (f*)36728¢§‘(
w2><(07T) 0

T
4 / A, b, e()]3 + /

N2 (al + | Ay + |y’|2>>
(0,T) xwa

where I(s, A; €) is the left-hand side of inequality (4.5), namely

1609 = 57 [ (P 1saP)+ [ anaP e [ P [ var
QY Qy QY QY

T

T
oxt [ aquaPasnt [ Qe estn [ @pizhl v [ e (e + 14 Ry ).
QT QT E;« 0

4.3 Estimates of the local integrals of Ay and y’.

The next steps consist in estimating the two local integrals in the right-hand side of the previous inequality.
From now on, we fix k = 4 as in [4, 14, 5]. We denote 6(t) = sA{e™*#*. First, we have

[ pavE< [ @@PE [ 10R(a I P)
(O,T) Xwa2 (O,T)Xw;; (O,T)Xw;;

for w3 such that wy CC w3 CC w. Second

/(OT) |é|2|y/‘2 < C(/(OT) )‘259/2(6*)9/26_%@”3"2+)‘5H(85*)15/4e_s¢;y|‘i2(w2x(O,T))
') X wa L) Xwa2

(y7 kla k.Q)H%/

T T
+)\5/ (Sf*)15/2€—25¢;||(a,b,c)||§,+/ )‘_133/2(8)3/26_239";
X 0
T
Jr/ )\*13*15716—28903\”(},/’ k/laklgﬂ%;) '
0

Combining all the previous estimates, we get that

I(s, M) < C / As(56*)15/26_28“’;|.‘>’|2JF/ N (s€7)1%e 2% |(a, b, 0) 1§
(0,T) xwa (0,T) Xwa
T * T ~ N
b [ AT e (k) [ AITE ek I (46)
0 0

T
e Rt (RN |k2|fw)> -
0
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The terms in the second line and the one depending on k; in the last line of the right-hand side of
(4.6) can be absorbed in the left-hand side because of the factor A1 and estimates on the derivatives of
(¥, k1, k2) in Theorem 2.5.

Remember that y = e’#*z, we can rewrite inequality I(s, A, &) in terms of y as follow

I(s,\€) = 5’1/ é’lp’ZS(IY'IQ+IAy|2)+/ p’QS\VW|2+SA2/ &p % |Vy?
Q0 Q0 Q.

T
+5001 /Q R (el IR LTy A (T NP RE )
T T

(4.7
Finally, we can sum up all the previous results in the following proposition:

Proposition 4.2. For X\ large enough, there is so(A) > 0 such that for all s > so(N\) and for all the
solutions (z,k1,k2) of (4.3), we have

T
I(s;, ) < C / N2 (sE7) 10/ 2o y|2+/ N (€)% e 245 | (a, b, 0) |3
(0,T) xwa 0

J * (4.8)
+S5/2/ (5*)36_2S¢AA1/2]€1D2QN>
0
where I(s, A, &) has been redefined in (4.7).

4.4 Treatment of the integral of k;.

Here, we estimate the term s°/2 fOT(g*)ge’%“’; AY2k|2 . Using the same idea as in [14, sections 6 & 7],
that is the finite dimensional setting of the beam equation, we get the following last Carleman estimate:

T
y‘2+/ )\5(S£>»=)15/2€—25<,aA
0

I(s, ;) < C </ AP (s€7)15/2e 2045 (a,b, C)||§/>
(0,T) Xwa

for s and A large enough.

4.5 From the Carleman estimate to the observability inequality.

We introduce here a piecewise continuous function ! defined in [0, 7] by

- T2/4 if te[0,T/2],
It) = { t(T—t) if te[T/2,T).

which gives us two new weight functions §(z,t) = ﬁ({g and o(xz,t) = w

We use here the energy estimates for the system (4.1). Namely, we have

||y||%°°(O,T;L2(QO)) + ||A1/2k1||2Loo(o,T;RN) + ||k2||2Loo(0,T;RN) + 2V||VYH%2(Q%)
(4.9)
< C(HaHiz(QOT) + ”Al/zb”%?(O,T;RN) + ||CH2L2(0,T;RN))-

That is, using the notation of the space V defined in (2.9), we have

||(Y7 k1, k2)||%°°(O,T;V) + 2V||Vy||iQ(Q%) < C(H (a7 b, C)HiQ(O,T;V)) :
We introduce a weight function 6 in C*([0,T]; R) satisfying

§=1in[0,7/2], 6=0in [3T/4,T] and |¢'| <1/T.
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Let us now consider the system satisfied by (fy, 0w, k1, k2) = (y*, 7%, k1, k2):

—y; —divo(y*,7*) = fa—10y Q%)
divy* = 0 (Q7)
y* = 0Zkge, (=59
| (E7) (4.10)
0k, = Oky—0b (0,7)
Okh +0Ak, = —Ilym*—6c (0,7T)
(Y(T), k1(T), k2(T)) = (0,0,0)

2

By some integrations by parts, and thanks to (4.9), we get the energy estimate of system (4.10):
2
L2(0,3T/4;V)

2
H(y’kl’k2>‘L2(o,T/2;V) H(y’kl’ 2)HL 0 (0,T/2;V) VHVy”LQ(QT/?;L“’(Qo))SCH<a’b’C)‘
(4.11)

Because the weigths ¢ and o are constant in time on [0,7/2] and the weights in s and A are bigger in the
right-hand side than in the left-hand side, this gives in particular,

H( H Jr83)\4/ / 258 3\y|2

/2
+S}\2A /S; 2550|vy|2+83>\3/0 7255 3|k2|RN (412)
0

T/2 )
< o[ Norye ||<a,b7c>||%v]
0

On the other hand, the Carleman estimate (4.8) in Proposition 4.2 gives, because § = ¢y and £ = o for
tin [T'/2,T], the same result:

T T T
8)\2/ / U‘Vy‘Qe_QS(; + 83/\4/ / 0_3|y|2e—236 + 53)\3/ / 036_256|k2‘ﬂ2§1\1
T/2JQ0 T/2JQ0 T/2JT§

T T
C / / )\5(80_*)15/28—256* ‘Y|2 + / )\5(80_*)15/2e—2s6* (a7 b, C)”%
T/2 Jws T/2

Finally, adding inequalities (4.12) and (4.13), we get the expected observability inequality

T
| (310 b1k ) [+ 55 [ o705 O Iy @)=y + kel
0

< c(/ X5 (507 (1))15/2e=255" O a(t), b(t), (1)) |3 + / X (07 (1)) 15/2¢=29° t>|y||Lz<w>>

(4.13)
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