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Abstract : We study a coupled �uid-structure system. The structure corresponds to a part of the
boundary of a domain containing an incompressible viscous �uid. The structure displacement is modeled
by an ordinary di�erential equation. We prove the local null controllability of the system when the control
acts on a �xed subset of the �uid domain.

1 Introduction.

Controllability for �uid-structure systems has been studied recently. In a series of papers, J.P. Raymond
and M. Vanninathan prove null controllability for di�erent kinds of linear coupled systems modeling,
with an increasing di�culty, �uid-structure interaction in 2D. The �uid is modeled respectively by the
Helmholtz equation [11], the Heat equation [13, 12] and the Stokes equation [14].

In [3], A. Doubova and E. Fernandez-Cara consider a 1D interaction problem of a particle in a �uid
modeled by the Burgers equation. They prove null controllability for the linearized model and then local
null controllability for the nonlinear system.

Very recently, M. Boulakia, A. Oxel in [2] and O. Imanuvilov, T. Takahashi in [5] prove independently
local exact controllability for a system modeling a rigid body moving in a viscous incompressible �uid
described by the Navier-Stokes equations in 2D with a control acting in a �xed subset of the �uid domain.

In this paper, we are interested in the null controllability of a system coupling the Navier-Stokes
equations and an ordinary di�erential equation (see equations (1.7)�(1.6)). More precisely, we prove that
for any time T > 0 and any initial data small enough, we can �nd a control acting in a subdomain of the
�uid part such that the solution of our system vanishes at time T (see Theorem 1.3).

The systems in [3, 2, 5] deal with nonlinear �uid equations. The strategy of the di�erent proofs is
quite the same. First, a change of variables sets the problem in a �xed domain. Then, the di�erent
authors prove that the obtained linearized system is null controllable with some control. Finally, a �xed
point procedure gives the local null controllability.

The way used to prove the controllability of the linear [11, 13, 12, 14] or the linearized [3, 2, 5] systems
is based on the duality between the controllability of a system and the existence of an observability
inequality for the adjoint system. Such an observability inequality relies in fact on a Carleman estimate.
The proofs of Carleman estimates are really tricky and not straightforward.

1.1 The system.

We consider a viscous incompressible �uid in a two dimensional domain. The boundary of the domain
is split into two parts. One part is �xed, the other one is a moving beam. At rest, the beam is in its
reference state Γs0 = (0, L) × {1}, where L > 0 is the characteristic length of the beam. The domain of
the �uid at rest is denoted Ω0. Then its boundary Γ0 is the union of two curves Γs0 and Γ. We suppose
that the boundary Γ0 is smooth, that is at least C4.

The displacement of the beam is given by a function η depending on the time t and on the position
x in the reference state Γs0. Then, a priori, the function η is from (0,+∞)× (0, L) in R. For any t ≥ 0,
the moving boundary given by the displacement η is

Γsη(t) =
{

(x, y) ∈ R2 s.t. x ∈ (0, L) and y = 1 + η(t, x)
}
.
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Then, the �uid at time t occupies a domain noted Ωη(t) which has for boundary ∂Ωη(t) = Γ
⋃

Γsη(t).
We have the following assumption on the displacement

∃ε > 0 such that ∀t ∈ [0, T ] ∀x ∈ (0, L) 1 + η(t, x) ≥ ε > 0 (1.1)

to ensure that, for every time t, Ωη(t) is a connected domain.
Let us introduce some notations. We �x a time T > 0, then

Q0
T = (0, T )× Ω0, QηT =

⋃
t∈(0,T )

{t} × Ωη(t), ΣT = (0, T )× Γ,

Σs,0T = (0, T )× Γs0, Σs,ηT =
⋃

t∈(0,T )

{t} × Γsη(t), Σ0
T = (0, T )× Γ0.

Following the model in [8, 1, 7], the velocity u and the pressure p of the �uid in the domain QηT are
described by the Navier-Stokes equations

ut + (u · ∇)u− div σ(u, p) = 0 (QηT )
div u = 0 (QηT )

u = ηte2 (Σs,ηT )
u = 0 (ΣT )

u(0) = u0 (Ωη0)

(1.2)

In this equation, the term σ(u, p) is the Cauchy stress tensor de�ned by

σ(u, p) = −pI + ν
(
∇u + (∇u)T

)
.

The coe�cient ν > 0 is the viscosity of the �uid. Finally, e1 and e2 are the two vectors of R2

e1 = (1, 0)T , e2 = (0, 1)T .

Remark 1.1. Due to the incompressibility condition of the �uid, solutions (u, p) of system (1.2) and the
Dirchlet boundary condition ηte2 satisfy, for any time t,∫

Ωη(t)

div u(t) =
∫
∂Ωη(t)

u(t) · n(t) =
∫

Γs0

ηt(t) = 0.

The vector n(t) is the unit normal to ∂Ωη(t) outward Ωη(t). It is �xed on Γ and is given on Γsη(t) by

n(t) =
1√

1 + η2
x(t)

(
− ηx(t)e1 + e2

)
.

Thus, we will consider functions η in

L2
0(Γs0) =

{
µ ∈ L2(Γs0) s.t.

∫
Γs0

µ = 0

}
.

We assume that the displacement of the beam is a Galerkin approximation of the Euler-Bernoulli
beam model. Thus, the function η is of the form

η(t, x) =
N∑
k=1

qk(t)ζk(x), for x ∈ (0, L) and t ≥ 0 (1.3)

where N is a �xed integer greater than 1. The familly (ζk)k=1,...,N is a Hilbertian basis of L2
0(Γs0) (see

Remark 1.1). For each k ≥ 1, ζk belongs to C∞(Γs0; R) and satis�es

ζ(x) = 0, ζx(x) = 0 for x = 0, L.
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The unknown q(t) is a N × 1 vector,

q(t) = (q1(t), · · · , qN (t))T ,

which satis�es the following ordinary di�erential equation:

q′′(t) +Aq(t) = ΠN

[
− σ(u, p)

(
− ηxe1 + e2

)
· e2

]
=

(∫
Γs0

−σ(u, p)
(
− ηxe1 + e2

)
· ζke2

)T
k=1,...,N(

q(0), q′(0)
)

=
(
q0, q1

)
.

(1.4)

In this equation, A is the symmetric positive matrix de�ned by

A =

(∫
Γs0

(
αζk,xxζl,xx + βζk,xζl,x

))
k,l=1,...,N

,

ΠN is the projection from L2
0(Γs0) to RN . Then, ΠN satis�es, for every f in L2

0(Γs0),

ΠN (f) =
( ∫

Γs0

ζ1f, · · ·
∫

Γs0

ζNf

)T
.

Introducing M the R2×N matrix, M =
(
ζ1e2, . . . , ζNe2

)
=
(

0 . . . 0
ζ1 . . . ζN

)
, we have a quite simplier

notation for the right-hand side of (1.4):

q′′(t) +Aq(t) = −
∫

Γs0

MTσ(u, p)
(
− ηxe1 + e2

)
.

The displacement we consider can be seen as a Galerkin approximation of the one in [1, 10, 7]. Indeed,
let us introduce the following partial di�erential equation, called beam equation:

ηtt + αMsηxxxx − βηxx = −γs
[
σ(u, p)(−ηxe1 + e2) · e2

]
(0, T )× Γs0

η = 0 (0, T )× {0, L}
ηx = 0 (0, T )× {0, L}

(1.5)

The coe�cients α > 0 and β ≥ 0 are respectively the rigidity and the stretching of the beam. The
operator Ms is the projection from L2(Γs0) onto L2

0(Γs0) de�ned by

Msµ = µ− 1
|Γs0|

∫
Γs0

µ, ∀µ ∈ L2(Γs0).

We use the trace γs de�ned by

γsp = Ms(p|Γs0) = p|Γs0 −
1
|Γs0|

∫
Γs0

p|Γs0 ∀p ∈ Hσ(Ω0) with σ > 1/2.

Let us de�ne the operator (Aα,β , D(Aα,β)) on L2
0(Γs0) by

D(Aα,β) =
{
µ ∈ H4(Γs0) ∩ L2

0(Γs0) s.t. µ(x) = µx(x) = 0 for x = 0, L
}
,

Aα,βµ = αMsµxxxx − βµxx for all µ ∈ D(Aα,β).

We can easily see that (Aα,β , D(Aα,β)) is a symmetric positive operator. We denote
{

(λk, ζk)
}
k≥1

its

pairs of eigenvalues-eigenfunctions satisfying �rst ζk ∈ D(Aα,β) for all k ≥ 1 and second

Aα,βζk = λkζk for all k ≥ 1,(
ζk, ζl

)
L2(Γs0)

= 0 for k, l ≥ 1 s.t. k 6= l,(
ζk, ζl

)
H2(Γs0)

= δkl for all k, l ≥ 1.
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Then, the family (ζk)k≥1 constitutes a Hilbertian basis of L2
0(Γs0). Furthermore, each ζk for k ≥ 1 belongs

to C∞(Γs0; R) as sums of exponential functions.
With a direct calculation, we can verify that the right-hand side of the beam equation (1.4) is

σ(u, p)
(
− ηxe1 + e2

)
· e2 = p− 2νu2,y − νηx

(
u1,y + u2,x

)
.

Using the projection ΠN , it becomes

ΠN

[
p− 2νu2,y

]
− νΠN

[
ηx

(
u1,y + u2,x

)]
.

The �rst term is linear in the variables (u, p, q) whereas the second is quadratic in the same variables.
Then the �nite dimensional beam equation is

q′′ +Aq = ΠN

[
p− 2νu2,y

]
− νΠN

[
ηx

(
u1,y + u2,x

)]
,

(q(0), q′(0)) = (q0, q1).
(1.6)

We set a control c in a subset ω of the �uid domain. In assumption (1.1), we can take ε such that
the set ω will never touch the boundary Γsη(t). For that, let us suppose that

sup
(x,y)∈ω

y ≤ ε.

This is a physical issue because the domain ω is supposed to be in the �uid part of the domain and the
control force cannot be out of the domain.

Denoting Z(x) the 1×N vector Z(x) =
(
ζ1(x), . . . , ζN (x)

)
, we have equivalently

η(t, x) = Z(x)q(t), for x ∈ (0, L) and t ≥ 0.

The equality of the velocities on the boundary becomes u = ηte2 = Zq′e2. Then, the equations of the
�uid part are:

ut + (u · ∇)u− div σ(u, p) = cχω (QηT )
div u = 0 (QηT )

u = Zq′e2 (Σs,ηT )
u = 0 (ΣT )

u(0) = u0 (Ωη0)

(1.7)

The function χω above is the indicator function of the domain ω.

1.2 Functional setting.

In the �xed domain Ω0, we de�ne the classic Hilbert space in two dimensions L2(Ω0) = L2(Ω0; R2) and
in the same way the Sobolev spaces Hs(Ω0) = Hs(Ω0; R2). We denote

Vσ(Ω0) =
{
u ∈ Hσ(Ω0) ; div u = 0 in Ω0

}
.

Then we de�ne
Hσ,τ (Q0

T ) = L2(0, T ; Hσ(Ω0)) ∩Hτ (0, T ; L2(Ω0)),

Vσ,τ (Q0
T ) = L2(0, T ; Vσ(Ω0)) ∩Hτ (0, T ; V0(Ω0)).

We need a de�nition of Sobolev spaces in the time dependent domain Ωη(t):

De�nition 1.2. We say that u belongs to Hτ (
⋃
t∈(0,T ) {t}×Hσ(Ωη(t))) (respectively to Hτ (

⋃
t∈(0,T ) {t}×

Vσ(Ωη(t)))) if

• for almost every t in (0, T ), u(t) is in Hσ(Ωη(t)) (resp. in Vσ(Ωη(t))),

• t 7→ ‖u(t)‖Hσ(Ωη(t)) (resp. t 7→ ‖u(t)‖Vσ(Ωη(t))) is in Hτ (0, T ; R).
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We �nally de�ne

Hσ,τ (QηT ) = L2

 ⋃
t∈(0,T )

{t} ×Hσ
(
Ωη(t)

)⋂Hτ

 ⋃
t∈(0,T )

{t} × L2
(
Ωη(t)

) ,

Vσ,τ (QηT ) = L2

 ⋃
t∈(0,T )

{t} ×Vσ
(
Ωη(t)

)⋂Hτ

 ⋃
t∈(0,T )

{t} ×V0
(
Ωη(t)

) .

The pressure term p is de�ned in the Navier-Stokes equations up to a constant: only the derivatives
of p appears in (1.7). Then, we de�ne the space Hσ(Ω0) by

Hσ(Ω0) =
{
p ∈ Hσ(Ω0) such that

∫
Ω0

p = 0
}
.

We will look for p in L2
(⋃

t∈(0,T ){t} ×H1
(
Ωη(t)

))
(see De�nition 1.2).

1.3 Main result.

The aim of this paper is to prove the following result of null controlability of the system (1.7)�(1.6):

Theorem 1.3. Let T > 0. Let (u0, q0, q1) be in V1(Ωη0)×RN×RN satisfying the compatibility condition
u0 = Zq1e2 on Γsη0 and u0 = 0 on Γ. Then there exists r > 0 such that if

‖u0‖V1(Ωη0 ) + |q0|RN + |q1|RN < r,

then the system (1.7)�(1.6) is null controllable at time T in (u, q, q′). That means exactly there exists
c ∈ L2(0, T ; L2(ω)) such that

u(T ) = 0, q(T ) = 0 and q′(T ) = 0.

Like the other results of controllability of nonlinear coupled systems already mentioned in the intro-
duction, the �rst step of the proof is to use a suitable change of variables to set the system in a �xed
domain without changing the domain ω of the control. This change of variables and the equivalent system
are introduced in the Section 1.4. Then, in section 2, we prove the null controllability for the linearized
system with nonhomogeneous right-hand sides using a duality method and a Carleman estimate. The
proof of the Carleman estimate is postponed to section 4. Section 3 is devoted to the proof of Theorem
1.3. It relies on a �xed point procedure.

1.4 The system in a �xed domain.

We suppose that the rectangle R0 = (0, L)× (0, 1) is included in the domain Ω0, see Figure 1.

The change of variables is

θt : Ωη(t) −→ Ω0

(x, y) 7−→ (x, z) with

 z = ε+ (1− ε) y − ε
1− ε+ η(t, x)

if 0 ≤ x ≤ L and ε ≤ y < 1 + η(t, x)

z = y otherwise.
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R0Γ

Γs0

η(t)

Γsη(t)

ω

Figure 1: The domains Ω0 (on the left), Ωη(t)(on the right) and R0.

Setting f̂(x, z) = f(x, y), we can calculate the derivatives of f(x, y) using the derivatives of f̂(x, z) in
(0, L)× (ε, 1):

ft = f̂t − (z − ε) ηt
1− ε+ η

f̂z,

fx = f̂x − (z − ε) ηx
1− ε+ η

f̂z,

fy =
1− ε

1− ε+ η
f̂z,

fxx = f̂xx − 2(z − ε) ηx
1− ε+ η

f̂xz +
(

(z − ε) ηx
1− ε+ η

)2

f̂zz − (z − ε) (1− ε+ η)ηxx − η2
x

(1− ε+ η)2
f̂z,

fyy =
(1− ε)2

(1− ε+ η)2
f̂zz.

Now, we state the system satis�ed by û(x, z) = u(x, y) and p̂(x, z) = p(x, y):

ût − div σ(û, p̂) = ĉχω + F[û, p̂, η] (Q0
T )

div û = div w[û, η] (Q0
T )

û = Zq′e2 (Σs,0T )
û = 0 (ΣT )

û(0) = û0 (Ω0)

with F[û, p̂, η] = −(û · ∇)û = −(u · ∇)u, ĉ = c and w[û, η] = 0 for (x, z) ∈ Ω \ (0, L)× (ε, 1). For (x, z)
in (0, L)× (ε, 1), we have:

F(t, x, z) =
1

1− ε

(
−ηût +

[
(z − ε)ηt + ν(z − ε)

(
2η2
x

1− ε+ η
− ηxx

)]
ûz

+ ν

{
−2(z − ε)ηxûxz + ηûxx +

(z − ε)2η2
x − η(1− ε)

1− ε+ η
ûzz

}
+ ((z − ε)ηxp̂z − ηp̂x)e1 − (1− ε+ η)û1ûx + ((z − ε)ηxû1 − (1− ε)û2)ûz

)
and

w(t, x) =
1

1− ε
(−ηû1e1 + (z − ε)ηxû1e2) .

(1.8)
The change of variables gives us a new formula for the right-hand side of (1.6):

ΠN

[
p̂− 2νû2,z

]
+ h[û, η]

where

h[û, η] = νΠN

(
ηx

1 + η
û1,z + ηxû2,x −

η2
x − 2η
1 + η

û2,z

)
. (1.9)
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With the identi�cation (1.3), we can use the notation h[û, q] = h[û, η] and the same for F[û, p̂, q] and
w[û, q]. To simplify the notation, we drop out the symbol ·̂ and we get the following system:

ut − div σ(u, p) = cχω + F[u, p, q] (Q0
T )

div u = div w[u, q] (Q0
T )

u = Zq′e2 (Σs,0T )
u = 0 (ΣT )

q′′ +Aq = ΠN

[
p− 2νu2,z

]
+ h[u, q] (0, T )(

u(0), q(0), q′(0)
)

=
(
u0, q0, q1)

. (1.10)

A way to solve the system (1.10) is to �nd a equivalent problem with divergence free (see [1, 7]). Due
to the expression of the nonhonmogeneous divergence term div w, we look for a solution u of (1.10) under
the form u = v + w. The new system in the variables (v, p, q) is

vt − div σ(v, p) = cχω + F[u, p, q] (Q0
T )

div v = 0 (Q0
T )

v = Zq′e2 (Σs,0T )
v = 0 (ΣT )

q′′ +Aq = ΠNp+ h[u, q] (0, T )(
v(0), q(0), q′(0)

)
=

(
u0 −w(0), q0, q1)

. (1.11)

Indeed, the formula of w[u, q] gives us directly that w(0) = 1
1−ε

(
−η0u0

1e1 + (z − ε)η0
xu

0
1e2

)
only depends

on (u0, q0, q1) and that w[u, q]|Γ = 0 for (u, p, q) solution of the system (1.10). Furthermore, the term

ΠN

[
− 2νv2,z

]
does not appear in the right-hand side of (1.11)5 because if v in H2,1(Q0

T ) is solution of

(1.11) then div v = 0 and v1 = 0 on Γ0, which together give that v2,z = 0 on Γs0.
In system (1.11), F and h are de�ned by

F[u, p, q] = F[u, p, q] + ν∆w[u, q]−w[u, q]t, h[u, q] = h[u, q]− 2νΠN

[
w2,z[u, q]

]
(1.12)

with
v = v1e1 + v2e2 and w[u, q] = w1[u, q]e1 + w2[u, q]e2.

From now on, we denote
v0 = u0 −w[u, q](0). (1.13)

On the other hand, we have to add a compatibility condition at time t = 0 for (v0, q0, q1):

div(v0) = 0 (Ω0)
v0 = Zq1e2 (Γs0)
v0 = 0 (Γ)

. (1.14)

For (u0, q0, q1) the compatibility conditions are

div
(
u0 + 1

1−ε
(
Zq0u0

1e1 − (z − ε)Zxq0u0
1e2

) )
= 0 (Ω0)

u0 = Zq1e2 (Γs0)
u0 = 0 (Γ)

. (1.15)
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2 Null controllability of the linearized system with nonhomoge-

neous right-hand sides.

Fixing intial data (v0, q0, q1) and right-hand sides (F, h), our goal in this section is to prove the null
controllability of system (2.1).

vt − div σ(v, p) = cχω + F (Q0
T )

div v = 0 (Q0
T )

v = Zq′e2 (Σs,0T )
v = 0 (ΣT )

q′′ +Aq = ΠNp+ h (0, T )(
v(0), q(0), q′(0)

)
=

(
v0, q0, q1)

. (2.1)

This section is split into three parts. First, in section 2.1, we introduce an auxiliary linear system
and we state a result of controllability for this system under some assumptions. In section 2.2, we set
system (2.1) in the abstract general setting of the previous section. Then, in the last section, we prove
the controllability of system (2.1).

2.1 An auxiliary result.

This part is adapted from [5]. We consider the following abstract linear system:

z′(t) = Az(t) +Bu(t) + Jf(t), z(0) = z0. (2.2)

Here, U , H, F are Hilbert spaces and A is an unbounded linear operator generator of an analytic
semigroup on H denoted (etA)t≥0. B and J are two linear continuous operators respectively from U into
H and from F into H, z0 is an element of H.

Let us introduce weight functions ρi (i = 1, 2, 3) de�ned by

ρi : [0, T ]→ R continuous functions satisfying ρi(T ) = 0, ρi(t) > 0 ∀t ∈ [0, T ). (2.3)

Then, we de�ne three time-dependent weighted function spaces F, Z and U by

F =
{
f ∈ L2(0, T ;F ) s.t. ρ−1

1 f ∈ L2(0, T ;F )
}
,

Z =
{
z ∈ L2(0, T,H) s.t. ρ−1

2 z ∈ L2(0, T ;H)
}
,

U =
{
u ∈ L2(0, T, U) s.t. ρ−1

3 u ∈ L2(0, T ;U)
}
.

In this general abstract setting, we prove the following lemma:

Lemma 2.1. We have the equivalence between

(i) For any ψ in L2(0, T ;H), the solution φ of

−φ′(t) = A∗φ(t) + ψ(t), φ(T ) = 0 (2.4)

satis�es the estimate

‖φ(0)‖2H +
∫ T

0

ρ2
1(t)‖J∗φ(t)‖2F ≤ C

(∫ T

0

ρ2
2(t)‖ψ(t)‖2H +

∫ T

0

ρ2
3(t)‖B∗φ(t)‖2U

)
. (2.5)

(ii) For any (z0, f) in H × F, there exists u in U such that the solution z of (2.2) belongs to Z.

Proof. Remember that the general form of solution for system (2.2) can be written via the Duhamel
formula

z(t) = etAz0 +
∫ t

0

e(t−s)ABu(s)ds+
∫ t

0

e(t−s)AJf(s)ds
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which can also be written

z(t)−
∫ t

0

e(t−s)ABu(s)ds = etAz0 +
∫ t

0

e(t−s)AJf(s)ds.

We introduce two operators LT and MT as follows

LT : H × F −→ L2(0, T ;H)

(z0, f) 7−→
(
t 7→ etAz0 +

∫ t

0

e(t−s)AJf(s)ds
)

and
MT : Z× U −→ L2(0, T ;H)

(z, u) 7−→
(
t 7→ z(t)−

∫ t

0

e(t−s)ABu(s)ds
)
.

Then, condition (ii) of the Lemma is equivalent to

RangeLT ⊂ RangeMT .

This last inclusion is equivalent to the existence of a constant C > 0 such that

‖L∗Tψ‖H×F′ ≤ C‖M∗Tψ‖Z′×U′ for all ψ ∈ L2(0, T ;H). (2.6)

The spaces F′, Z′ and U′ are the dual spaces of F, Z and U:

F′ =
{
f ∈ L2(0, T, F ) s.t. ρ1f ∈ L2(0, T ;F )

}
,

Z′ =
{
z ∈ L2(0, T,H) s.t. ρ2z ∈ L2(0, T ;H)

}
,

U′ =
{
u ∈ L2(0, T, U) s.t. ρ3u ∈ L2(0, T ;U)

}
with the identi�cations H ≡ H ′, F ′ ≡ F and U ≡ U ′.

By a simple calculation, we get, for φ solution of (2.4),

L∗T : L2(0, T ;H) −→ H × F′, M∗T : L2(0, T ;H) −→ Z′ × U′.
ψ 7−→ (φ(0), J∗φ) ψ 7−→ (ψ,B∗φ)

Then, (2.6) becomes

‖φ(0)‖2H +
∫ T

0

ρ2
1(t)‖J∗φ(t)‖2F ≤ C

(∫ T

0

ρ2
2(t)‖ψ(t)‖2H +

∫ T

0

ρ2
3(t)‖B∗φ(t)‖2U

)
,

which is exactly (2.5).

Then, we have the following stronger result:

Theorem 2.2. Under the hypothesis of Lemma 2.1, assume that (i) holds. Then we can de�ne a linear
operator UT from H × F into U by

UT : H × F −→ U
(z0, f) 7−→ u(z0,f),

such that the solution z of system (2.2) corresponding with the control u(z0,f) belongs to Z.

Moreover, if z0 belongs to D((−A)1/2) and if there exists ρ0 in C2([0, T ]; R) such that

ρ0(t) ≥ 0 ∀t ∈ (0, T ) and ρ0(t) = 0⇐⇒ t = T,
ρi
ρ0
∈ L∞(0, T ) for i = 1, 2, 3,

ρ′0ρj
ρ2

0

∈ L∞(0, T ) for j = 1 or j = 2, (2.7)

then, z satis�es
z

ρ0
∈ L2(0, T ;D(−A)) ∩H1(0, T ;H) ∩ C([0, T ];D((−A)1/2)),

with the estimate∥∥∥∥ zρ0

∥∥∥∥
L2(0,T ;D(−A))∩H1(0,T ;H)∩C([0,T ];D((−A)1/2))

≤ C
(
‖z0‖D((−A)1/2) + ‖f‖F

)
.
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Proof. We begin by proving the existence of the bounded linear operator UT . Assuming condition (i) in
Lemma 2.1, we know that there exists for any initial data z0 in H and right-hand side f in F at least a
function u in U such that z belongs to Z. Now, we consider the following functional

J (z, u) =
1
2
‖z‖2F +

1
2
‖u‖2U.

Then, we can �nd among all the previous control u, the one minimizing this functional, with the corre-
sponding z. Thanks to the observability inequality, a direct calculation gives that this control u satis�es
the estimate

‖u‖U ≤ C
(
‖z0‖H + ‖f‖F

)
.

Denoting u = UT (z0, f), then UT is a linear operator from H × F into U. Furthermore, it is bounded
thanks to the previous inequality.

The second part relies on the following classical proposition:

Proposition 2.3. Let A : D(A) ⊂ X into X where X is a Hilbert space and A an operator generator
of an analytic semigroup on D(A) with a compact resolvent in X. If Y0 belongs to D((−A)1/2) and B
belongs to L2(0, T ; X), then equation

Y ′(t) = AY(t) + B(t), Y(0) = Y0

admits a unique solution Y in L2(0, T ;D(A))∩H1(0, T ; X)∩C([0, T ];D((−A)1/2)). Furthermore, we get
the estimate

‖Y‖L2(0,T ;D(A))∩H1(0,T ;X)∩C([0,T ];D((−A)1/2)) ≤ C
(
‖Y0‖D((−A)1/2) + ‖B‖L2(0,T ;X)

)
.

Because u(z0,f), f and z0 belongs respectively to L2(0, T ;H), L2(0, T ;F ) and D((−A)1/2), we can
apply the previous proposition and we get that that the solution z of (2.2) belongs to L2(0, T ;D(−A))∩
H1(0, T ;H) ∩ C([0, T ];D((−A)1/2)). Futhermore, dividing equation (2.2) by ρ0, we obtain(

z

ρ0

)′
= A

(
z

ρ0

)
+

f

ρ0
− ρ′0
ρ2

0

z,

(
z

ρ0

)
(0) =

z0

ρ0(0)
. (2.8)

Then, we get that
(
z
ρ0

)′
belongs to L2(0, T ;H) provided that z

ρ0
belongs to L2(0, T ;D(−A)). From the

previous lemma, we have z
ρ2

in L2(0, T ;H); second, from the choice of the function ρ0, we have

−ρ
′
0

ρ2
0

z = −ρ
′
0ρ2

ρ2
0

z

ρ2

which belongs to L2(0, T ;H). Then, applying Proposition 2.3 to system (2.8), we get that

z

ρ0
∈ L2(0, T ;D(−A)) ∩H1(0, T ;H) ∩ C([0, T ];D((−A)1/2))

with the estimate∥∥∥∥ zρ0

∥∥∥∥
L2(0,T ;D(−A))∩H1(0,T ;H)∩C([0,T ];D((−A)1/2))

≤ C
(
‖z0‖D((−A)1/2) + ‖f‖F

)
.

2.2 Equivalent system.

In this section, we �x the initial data (v0, q0, q1) in X0
cc de�ned by

X0 = H1(Ω0)× RN × RN

10



and
X0

cc =
{

(z0, k0, k1) ∈ X0 such that (z0, k0, k1) veri�es (1.14)
}
.

The space X0 is equipped with the norm

‖(z0, k0, k1)‖X0 =
(
‖z0‖2H1(Ω0) + |A1/2k0|2RN + |k1|2RN

)1/2

.

The right-hand side (F, h) belongs to the time-dependent weighted function space WT (see below). Let
us de�ne

V = V0(Ω0)× RN × RN (2.9)

equipped with the norm∥∥∥(v, q, r)
∥∥∥2

V
= ‖v‖2L2(Ω0) + |A1/2q|2RN + |r|2RN for all (v, q, r) ∈ V.

We introduce the spaces

WT =
{

(G, g) ∈ L2(0, T ; L2(Ω0)× RN ) s.t. ρ−1
1 (G, g) belongs to L2(0, T ; L2(Ω0)× RN )

}
,

ZT =
{

(z, r) s.t. (z, r, r′) and ρ−1
2 (z, r, r′) are in L2(0, T ; V)

}
,

UT =
{
d ∈ L2(0, T ; L2(ω)) s.t. ρ−1

3 d is in L2(0, T ; L2(ω))
}
.

These spaces are equipped with the norms

‖(G, g)‖WT
=

∫ T

0

ρ−2
1 (t)

[
‖G(t)‖2L2(Ω0) + |g(t)|2RN

]
dt for all (G, g) ∈ WT ,

‖(z, r)‖ZT =
∫ T

0

ρ−2
2 (t)‖(z, r, r′)(t)‖2Vdt for all (z, r) ∈ ZT ,

‖d‖UT =
∫ T

0

ρ−2
3 (t)‖d(t)‖2L2(ω)dt for all d ∈ UT .

We now write system (2.1) as a �rst order in time linear partial di�erential equation. Let us introduce
the so-called Leray projection P from L2(Ω0) in V0

n(Ω0) where

V0
n(Ω0) =

{
u ∈ L2(Ω0) such that u · n = 0 on Γ0 and div u = 0 in Ω0

}
.

We split system (2.1) using the equality v = Pv + (I −P )v. Let us denote ve = Pv and vs = (I −P )v.
Each part of the velocity �eld v is associated with a corresponding pressure term pe and ps. We have
the following proposition:

Proposition 2.4. System (2.1) can be splitted into two systems. One, system (2.10), is an evolutionary
system in the variables (ve, q1, q2) (where q1 = q and q2 = q′) and the other, system (2.11), is a stationary
system giving (vs, pe, ps) as functions of (ve, q1, q2). That is system (2.1) is equivalent to (2.10)�(2.11)
(see the notation below): ve

q1

q2

′ = Ks

 A0 0 (−A0)PDs

0 0 IN
νΠNN (∆(·) · n) −A 0

 ve
q1

q2


+Ks

 PF
0

ΠNπ(F) + h

+

 P (cχω)
0

ΠNπ0(cχω)


(ve(0), q1(0), q2(0))T = (Pv0, q0, q1)T

(2.10)
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and secondly
vs = ∇Ns(Zq2) (Q0

T )
pe = N (∆ve · n) (Q0

T )
ps = π(F) + π0(cχω)−Ns(Zq′2) (Q0

T )
p = pe + ps (Q0

T )
v = ve + vs (Q0

T )

(2.11)

Furthermore, system (2.10) is exactly under the form of system (2.2).

Proof. We use a method due to Raymond (see [9]). In particular, we adapt here the decomposition of a
similar system made in [10]. We write it in this paper for sake of completness. From the Stokes system

vt − ν∆v +∇p = cχω + F (Q0
T )

div v = 0 (Q0
T )

v = Zq′e2 (Σs,0T )
v = 0 (ΣT )

v(0) = v0 (Ω0)

,

we get the following equivalent system

ve,t − ν∆ve +∇pe = P (cχω) + PF (Q0
T )

ve = −γτvs (Σ0
T )

ve(0) = Pv0 (Ω0)
vs = ∇Ns(Zq′) (Q0

T )
ps = π(F) + π0(cχω)−Ns(Zq′′) (Q0

T )
v = ve + vs (Q0

T )
p = ps + pe (Q0

T )

. (2.12)

In (2.12), we denote Ns(·) = N (·χΓs0
) where N the operator from Hσ(Γ0) to Hσ+3/2(Ω0) (for σ ≥ −1/2)

de�ned by r = N (j) for j in Hσ(Γ0) if and only if

∆r = 0 in Ω0,
∂r

∂n
= j on Γ0.

and π and π0 are operators from L2(Ω0) into H1(Ω0) de�ned by ∆π(F) = div F (Ω0)
∂π(F)
∂n

= F · n (Γ0)
and

{
∆π0(cχω) = div(cχω) (Ω0)
∂π0(cχω)

∂n
= 0 (Γ0)

. (2.13)

We have an explicit formula for π and π0:

π(F) = −(−∆D)−1(div F) +N ((F +∇(−∆D)−1(div F)) · n),

π0(cχω) = −(−∆D)−1(div(cχω)) +N ((∇(−∆D)−1(div(cχω))) · n),

where π1 = −(−∆D)−1(g) if and only if π1 ∈ H1
0 (Ω0) and ∆π1 = g in Ω0 for any g ∈ H−1(Ω0).

From the �rst equation in (2.12), we get that pe satis�es for any time t in (0, T ):

∆pe(t) = 0 in Ω0,
∂pe(t)
∂n

= ν∆ve(t) on Γ0,

that is pe = νN (∆ve · n).
In conclusion, p = ps + pe is equal to

p = π(F) + π0(cχω)−Ns(Zq′′) + νN (∆ve · n) in Ω0.

Then the beam equation becomes

(IN + ΠNNs(Z (·)))q′′ +Aq = νΠNN (∆ve · n) + ΠNπ(F) + ΠNπ0(cχω) + h.
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System (2.1) is equivalent to system

ve,t −∆ve +∇pe = P (cχω) + PF (Q0
T )

ve = −γτvs (Σ0
T )

ve(0) = Pv0 (Ω0)
vs = ∇Ns(Zq′) (Q0

T )
ps = π(F)−Ns(Zq′′) (Q0

T )
(IN + ΠNNs(Z(·)))q′′ +Aq = νΠNN (∆ve · n) + ΠNπ(F) + ΠNπ0(cχω) + h (0, T )(

q(0), q′(0)
)

=
(
q0, q1

)
v = ve + vs (Q0

T )
p = ps + pe (Q0

T )

. (2.14)

From this system, we can obtain an evolution equation. Indeed, (ve, q, q′) is uncoupled to (vs, pe, ps).
Then, we have �rst, with obvious notation q = q1 and q′ = q2: ve

q1

q2

′ = Ks

 A0 0 (−A0)PDs

0 0 IN
νΠNN (∆(·) · n) −A 0

 ve
q1

q2


+Ks

 PF
0

ΠNπ(F) + h

+

 P (cχω)
0

ΠNπ0(cχω)


(ve(0), q1(0), q2(0))T = (Pv0, q0, q1)T

(2.15)

and secondly
vs = ∇Ns(Zq2) (Q0

T )
pe = N (∆ve · n) (Q0

T )
ps = π(F) + π0(cχω)−Ns(Zq′2) (Q0

T )
p = pe + ps (Q0

T )
v = ve + vs (Q0

T )

(2.16)

where Ks an isomorphism from V0
n(Ω0)× RN × RN into itself de�ned by

Ks =

 Id 0 0
0 IN 0
0 0 (IN + ΠNNs(Z(·)))−1

 , (2.17)

A0 is the Stokes operator de�ned by D(A0) = V2(Ω0) ∩V1
0(Ω0) in V0

n(Ω0) and A0ze = νP∆ze, for all
ze in D(A0). The operator Ds is a lifting of the nonhomogeneous Dirichlet condition v = Zq2e2 on Γs0
de�ned from RN into V2(Ω0) for r in RN by z = Dsr if and only if there exists a function ρ in H1(Ω0)
such that

−ν∆z +∇ρ = 0 (Ω0)
div z = 0 (Ω0)

z = Zre2 (Γs0)
z = 0 (Γ)

.

We �nally get that system (2.10)�(2.11) is equivalent to system (2.14), that is system (2.10)�(2.11) is
equivalent to system (2.1).

We now can identify notations from (2.10) with those from the previous section. The Hilbert spaces
H, U and F are now respectively

Vn = V0
n(Ω0)× RN × RN , L2(ω) and L2(Ω0)× RN .

The operator A in (2.2) is remplaced by

A = Ks

 A0 0 (−A0)PDs

0 0 IN
νΠNN (∆(·) · n) −A 0


13



which is de�ned from

D(A) =
{

(ze, q1, q2) ∈ V2(Ω0) ∩V0
n(Ω0)× RN × RN s.t. ze = −γτ∇Ns(Zq2) on Γ0

}
in Vn. We have

B : L2(ω) −→ Vn

cχω 7−→

 P (cχω)
0

(IN + ΠNNs(Z(·)))−1ΠNπ0(cχω)

 , J

(
F
h

)
= J1F + J2h

with

J1 : L2(Ω0) −→ Vn

F 7−→ Ks

(
PF, 0,ΠNπ0(F)

)T ,
J2 : RN −→ Vn

h 7−→ Ks

(
0, 0, h

)T .

This gives, with f = (F, h) in L2(Ω0)× RN ,

Jf =
(
PF, 0, (IN + ΠNNs(Z(·)))−1

[
ΠNπ(F) + h

])T
.

Finally,

z = (ve, q1, q2)T and z0 =
(
Pv0, q0, q1

)T
.

2.3 Null Controllability of system (2.1).

We can now state the main result of this section:

Theorem 2.5. Let (v0, q0, q1) be in X0
cc. There exists a linear bounded operator UT from V×WT into

L2(0, T ; L2(ω)) such that for all (F, h) in WT the solution of system (2.1) associated with the function

c = UT

(
(v0, q0, q1), (F, h)

)
in the right-hand side belongs to XT de�ned by

XT =
{

(x, π, r) ∈ XT ; ρ−1
0 (x, π, r) ∈ XT

}
equipped with the norm ‖(x, π, r)‖XT =

∥∥ρ−1
0 (x, π, r)

∥∥
XT

where XT = H2,1(Q0
T )× L2(0, T ;H1(Ω0))×H2(0, T ; RN ). Furthermore, we have the estimate:

‖(v, p, q)‖XT ≤ C
(
‖(v0, q0, q1)‖X0 + ‖(F, h)‖WT

)
.

That is, system (2.1) is null controllable at time T > 0:

v(T ) = 0 in Ω0, q(T ) = 0 and q′(T ) = 0.

The proof of this proposition relies on the two previous sections. First, thanks to section 2.2, system
(2.1) is equivalent to system (2.10)�(2.11). Then, we can apply results of section 2.1 to system (2.10).
Finally, this results and an observability inequality �nish the proof.

First, we want to write Lemma 2.1 for system (2.10). Thus, we have to calculate the adjoint operators
A∗, B∗ and J∗.

Lemma 2.6. We de�ne the bilinear form φ on Vn by

φ
(

(ve, q1, q2), (ye, k1, k2)
)

= (ve,ye)L2(Ω0) + (A1/2q1, A
1/2k1)RN + (q2, (In + ΠNNs(Z(·)))k2)RN ,

for (ve, q1, q2) and (ye, k1, k2) in Vn. Then, φ is a scalar product on Vn. We still denote Vn the space
Vn endowed with this scalar product. In the following, we set

〈·, ·〉Vn
= φ(·, ·).
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Proof. We have to prove that the operator ΠNNs(Z·) : RN → RN is symmetric and positive. Let us take
q2 and k2 in RN , we calculate (q2,ΠNNs(Zk2))RN . By de�nition, the function a = Ns(Zk2) belongs to

H2(Ω0) and satis�es

{
∆a = 0 (Ω0)
∂a

∂n
= Zk2χΓs0

(Γ0)
. In the same way, we denote b = Ns(Zq2). First, with

the previous notation
(q2,ΠNNs(Zk2))RN = (Zq2, a)L2(Γs0)

=
(
∂b

∂n
, a

)
L2(Γs0)

.

Second, an integration by parts gives

(∆b, a)L2(Ω0) = −(∇b,∇a)L2(Ω0) +
(
∂b

∂n
, a

)
L2(Γs0)

or (b,∆a)L2(Ω0) = −(∇b,∇a)L2(Ω0) +
(
b,
∂a

∂n

)
L2(Γs0)

.

That is, because ∆a = 0 and ∆b = 0 in Ω0,(
∂b

∂n
, a

)
L2(Γs0)

= (∇b,∇a)L2(Ω0),

(
b,
∂a

∂n

)
L2(Γs0)

= (∇b,∇a)L2(Ω0).

Putting all the calculations together, we get

(q2,ΠNNs(Zk2))RN = (∇b,∇a)L2(Ω0)

= (ΠNNs(Zq2), k2)RN
.

To prove the positivity, we calculate (q2,ΠNNs(Zq2))RN for q2 in RN . With the previous equality, we
obtain

(q2,ΠNNs(Zq2))RN = ‖∇b‖2L2(Ω0),

which concludes the proof.

Proposition 2.7. - The operator A is a generator of an analytic semigroup on Vn. Furthermore, it
has a compact resolvent. The adjoint operator A∗ is given by D(A∗) = D(A) and

A∗ =

 Id 0 0
0 IN 0
0 0 (IN + ΠNNs(Z(·)))−1

 A0 0 (−A0)PDs

0 0 −IN
νΠNN (∆(·) · n) A 0

 .

- The operator B∗ is de�ned from Vn into L2(ω) by

B∗

 ye
r1

r2

 = (ye +∇Ns(Zr2))χω.

The operator J∗ is de�ned from Vn into L2(Ω0)× RN by

J∗

 ye
r1

r2

 =
(

(ye +∇Ns(Zr2)), r2

)
.

Proof. The �rst point of the proof can be easily adapted from [10, Section 3.] and is left to the reader.
We now prove the second point. Let d be in L2(ω) and (ye, r1, r2) be in Vn, then, by de�nition of B,〈

Bd,

 ye
r1

r2

〉
Vn

= (Pd,ye)V0
n(Ω0) + (ΠNπ0(d), r2)RN .
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By an integration by parts, we have

(π0(d),∆q)L2(Ω0) = −(∇π0(d),∇q)L2(Ω0) +
(
π0(d),

∂q

∂n

)
L2(∂Ω0)

. (2.18)

Denoting q = Ns(Zr2), from equation (2.18), we obtain

(ΠNπ0(d), r2)RN = (π0(d), Zr2)L2(Ω0) =
(
π0(d),

∂q

∂n

)
L2(∂Ω0)

= (∇π0(d),∇q)L2(Ω0).

Then, setting y = ye +∇q, we see that y is an element of V0(Ω) satisfying

y · n = Zr2 on Γs0, y · n = 0 on Γs0

and furthermore, thanks to the de�nition of π0(d) (see (2.13)), we have d = P (d) +∇π0(d). Thus,

(y,d)L2(Ω0) = (ye +∇q, P (d) +∇π0(d))L2(Ω0)

= (ye, P (d))L2(Ω0) + (∇q,∇π0(d))L2(Ω0) + (ye,∇π0(d))L2(Ω0) + (∇q, P (d))L2(Ω0).

To conclude, we see that ye and P (d) belong to V0
n(Ω0) whereas ∇q and ∇π0(d) belongs to (V0

n(Ω0))⊥.
Then,

(y,d)L2(Ω0) = (ye, P (d))L2(Ω0) + (∇q,∇π0(d))L2(Ω0).

Finally, putting all this calculations together, we get〈
B(d),

 ye
r1

r2

〉
Vn

= (d,y)L2(Ω0) = (d,y)L2(ω).

That is B∗, the adjoint operator of B, is de�ned from Vn into L2(ω) by

B∗

 ye
r1

r2

 = (ye +∇Ns(Zr2))χω.

We directly deduce J∗ from the calculations above.

Then, we have the following proposition:

Proposition 2.8. The two following statements are equivalent:

(i) For all (ae, b, c) in L2(0, T ; Vn), the solution (ye, k1, k2) of equation

−

 ye
k1

k2

′(t) = A∗
 ye

k1

k2

(t) +

 ae
b
c

(t)

(ye(T ), k1(T ), k2(T ))T = (0, 0, 0)T
(2.19)

satis�es the inequality

‖(ye(0), k1(0), k2(0))‖2Vn
+
∫ T

0

ρ2
1(t)

[
‖ye +∇Ns(Zk2)‖2L2(Ω0) + |k2|2RN

]
≤ C

(∫ T

0

ρ2
2(t) ‖(ae(t), b(t), c(t))‖2Vn

+
∫ T

0

ρ2
3(t) ‖ye +∇Ns(Zk2)‖2L2(ω)

)
.

(ii) For all
(

(Pv0, q0, q1), (F, h)
)
in Vn × WT , there exists a control c in UT such that the solution

(ve, q1, q2) of (2.10) belongs to ZeT with

ZeT =
{

(xe, r1, r2) ∈ L2(0, T ; Vn) s.t. ρ−1
2 (xe, r1, r2) ∈ L2(0, T ; Vn)

}
.
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Using the same idea as in section 2.2, we get that there exists a pressure term π such that (y, π, k1, k2)
de�ned from (ye, k1, k2) solution of (2.19) by y = ye +∇Ns(Zk2) is solution of the system

−yt − div σ(y, π) = a (Q0
T )

div y = 0 (Q0
T )

y = 0 (ΣT )
y = Zk2e2 (Σs,0T )
k′1 = k2 − b (0, T )

k′2 +Ak1 = −ΠNπ − c (0, T )(
y(T ), k1(T ), k2(T )

)
= (0, 0, 0)

(2.20)

with a = ae + ∇Ns(Zc). System (2.20) is exactly the adjoint of system (2.1). Furthermore, with the
notation y = ye +∇Ns(Zk2) for (ye, k1, k2) in Vn, we have �rst that (y, k1, k2) belongs to V and second
that ∥∥∥(ye, k1, k2)

∥∥∥2

Vn

= ‖ye‖2L2(Ω0) + |A1/2k1|2RN + (k2, (In + ΠNNs(Z·))k2)RN

= ‖y‖2L2(Ω0) + |A1/2k1|2RN + |k2|2RN

=
∥∥∥(y, k1, k2)

∥∥∥2

V

(see this calculation in the proof of Lemma 2.6 above).
Finally, Proposition 2.8 can be written in term of system (2.1) and its adjoint (2.20) as follows:

Proposition 2.9. The two following statements are equivalent:

(i) For all (a, b, c) in L2(0, T ; V), the solution (y, π, k1, k2) of system (2.20) satis�es the inequality:∥∥∥(y(0), k1(0), k2(0)
)∥∥∥2

V
+
∫ T

0

ρ2
1

[
‖y‖2L2(Ω0) + |k2|2RN

]
≤ C

(∫ T

0

ρ2
2(t)‖(a(t), b(t), c(t))‖2Vdt+

∫ T

0

ρ2
3(t)‖y(t)‖2L2(ω)

)
.

(ii) For all (v0, q0, q1) in V and all (F, h) in WT , there exists c in UT such that the solution (v, p, q) of
system (2.1) satis�es (v, q) ∈ ZT .

We set here the result on the observability inequality.

Theorem 2.10. We introduce the weight functions (ρi)i=0,1,2,3

ρ0(t) = e−
3s
4 δ
∗(t),

ρ1(t) = (sλ)3/2(σ∗(t))3/2e−sδ
∗(t),

ρ2(t) = λ5/2s15/4(σ∗(t))15/4e−sδ
∗(t),

ρ3(t) = ρ2(t).

(2.21)

where σ∗ and δ∗ are given at the end of section 4. Then, there exists C > 0 such that all the smooth
solutions (y, π, k1, k2) of system (2.20) with any right-hand side (a, b, c) in L2(0, T ; V) satisfy the inequality∥∥∥(y(0), k1(0), k2(0)

)∥∥∥2

V
+
∫ T

0

ρ2
1

[
‖y‖2L2(Ω0) + |k2|2RN

]
≤ C

(∫ T

0

ρ2
2(t)‖(a(t), b(t), c(t))‖2Vdt+

∫ T

0

ρ2
3(t)‖y(t)‖2L2(ω)

)

for s and λ large enough (s ≥ ŝ and λ ≥ λ̂).

The proof is postponed to section 4 and relies on a Carleman inequality. Now, we are able to prove
the main result of section 2.3.
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Proof of Theorem 2.5. Thanks to Theorem 2.10, condition (i) of Proposition 2.9 is satis�ed. Then, we
can apply Theorem 2.2 to system (2.10). That is, there exists a bounded linear operator UeT from Vn×WT

into UT such that the solution (ve, q1, q2) of system (2.10) associated with c = UeT

(
(Pv0, q0, q1), (F, h)

)
belongs to ZeT . Using (2.11), we get that vs belongs to

ZsT =
{
xs ∈ L2(0, T ; L2(Ω0)) s.t. ρ−1

2 xs ∈ L2(0, T ; L2(Ω0))
}
.

This gives together that (v, q1, q2) ∈ ZT . Then, denoting ET the linear bounded operator from V×WT

into Vn ×WT de�ned by

ET

(
(v0, q0, q1), (F, h)

)
=
(

(Pv0, q0, q1), (F, h)
)
,

we get that UT = UeT ◦ ET is the linear bounded operator of the proposition.
Furthermore, for (v0, q0, q1) in X0

cc, we get that (Pv0, q0, q1) belongs to D((−A)1/2) = V1
n(Ω0) ×

RN × RN . Applying now the second point of Theorem 2.2 to system (2.10), we get that ρ−1
0 (ve, q1, q2)

belongs to

L2(0, T ;D(−A)) ∩H1(0, T ; Vn) ∩ C([0, T ];D((−A)1/2))
= V2,1(Q0

T )×H1(0, T ; RN )×H1(0, T ; RN ) ∩ C([0, T ]; V1
n(Ω0)× RN × RN ).

Then, using (2.11), we get that ρ−1
0 (vs, pe, ps) belongs to(

H2,1(Q0
T ) ∩ C([0, T ]; H1(Ω0))

)
×
[
L2(0, T ;H1(Ω0))

]2
.

Finally, v = ve + vs, p = ps + pe and q satisfy

v, ρ−1
0 v ∈ H2,1(Q0

T ) ∩ C([0, T ]; H1(Ω0)),
p, ρ−1

0 p ∈ L2(0, T ;H1(Ω0)),
q, q′, ρ−1

0 q, ρ−1
0 q′ ∈ H1(0, T ; RN ).

That is, thanks to the embedding H1(0, T ; RN ) ↪→ C([0, T ]; RN ) and the de�nition of ρ0 (especially,
ρ0(T ) = 0), that we have the null controllability of system (2.1):

v(T ) = 0, in Ω0 and q(T ) = q′(T ) = 0.

3 Proof of Theorem 1.3.

In this section, we prove Theorem 1.3. First, we use the previous section to prove the theorem in the
cylinder (0, T ) × Ω0. Then, we will derive Theorem 1.3 from this result using the change of variables
introduced in section 1.4.

3.1 In the cylinder (0, T )× Ω0.

First, we begin by proving the null controllability of system

ut − div σ(u, p) = cχω + F (Q0
T )

div u = div w (Q0
T )

u = Zq′e2 (Σs,0T )
u = 0 (ΣT )

q′′ +Aq = ΠN

[
p− 2νu2,z

]
+ h (0, T )(

u(0), q(0), q′(0)
)

=
(
u0, q0, q1)

. (3.1)
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Because u0 is not divergence free (see (1.15)), we do not have (u0, q0, q1) in the space V. Thus, we
introduce another Hilbert space

L = L2(Ω0)× RN × RN .

In system (3.1), the right-hand side (F,w, h) belongs to

WT =
{

(G, z, g) ∈WT s.t. ρ−1
1 (G, (−∆)z, z′, g) belongs to L2(0, T ; [L2(Ω0)]3 × RN )

}
equipped with the norm

‖(G, z, g)‖WT
=

∫ T

0

ρ−2
1 (t)

[
‖(G(t), (−∆)z(t), z′(t))‖2[L2(Ω0)]3 + |g(t)|2RN

]
dt for all (G, z, g) ∈ WT ,

where
WT =

{
(G, z, g) ∈ L2(Q0

T )×H2,1(Q0
T )× L2(0, T ; RN ) such that z = 0 on Γ0

}
.

Remark 3.1. Conditions
ρ′0ρj
ρ20
∈ L∞(0, T ) and ρi

ρ0
∈ L∞(0, T ) in (2.7) for j = 1 or j = 2 give respectively

the equivalence between
∆w
ρ1

,
w′

ρ1
∈ L2(Q0

T ) and
w
ρ0
∈ H2,1(Q0

T )

and
∆v
ρ2

,
v′

ρ2
∈ L2(Q0

T ) and
v
ρ0
∈ H2,1(Q0

T ).

Then, we have the following result:

Proposition 3.2. Let (u0, q0, q1) be in X0 satisfying (1.15). There exists a linear bounded operator UT
from L×WT into L2(0, T ; L2(ω)) such that for all (F,w, h) in WT the solution of system (3.1) associated

with the function c = UT

(
(u0, q0, q1), (F,w, h)

)
in the right-hand side belongs to XT . Furthermore, there

exists a constant C1 > 0 such that

‖(u, p, q)‖XT ≤ C1

(
‖(u0, q0, q1)‖X0 + ‖(F,w, h)‖WT

)
. (3.2)

That is, system (3.1) is null controllable at time T > 0

u(T ) = 0 in Ω0, q(T ) = 0 and q′(T ) = 0.

Proof. Let us de�ne the operator KT by

KT : L×WT −→ V×WT(
(u0, q0, q1), (F,w, h)

)
7−→

(
(v0, q0, q1), (F, h)

)
where v0 is de�ned by (see (1.13))

v0 = u0 −w(0)

and (F, h) are de�ned from (F,w, h) as follow (see (1.12))

F = F + ν∆w −wt, h = h− 2νΠN

[
w2,z

]
.

The operator KT is clearly linear. Moreover it is bounded∥∥∥KT

(
(u0, q0, q1), (F,w, h)

)∥∥∥
V×WT

≤ C
(
‖(u0, q0, q1)‖L + ‖w(0)‖L2(Ω0) + ‖(F, h)‖WT

)
≤ C

∥∥∥((u0, q0, q1), (F,w, h)
)∥∥∥

L×WT

.

Indeed, w belongs to H2,1(Q0
T ) ↪→ C([0, T ]; H1(Ω0)), then ‖w(0)‖L2(Ω0) ≤ C‖(F,w, h)‖WT

.
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Then, thanks to the existence of a bounded operator UT from V×WT into L2(0, T ; L2(ω)) used in The-
orem 2.5, we get by composition a linear bounded operator UT de�ned from L×WT into L2(0, T ; L2(ω)).

The fact that the solution (u, p, q) of (3.1) associated to c = UT

(
(u0, q0, q1), (F,w, h)

)
belongs to XT

comes exactly from Theorem 2.5 and u = v + w. Indeed, by construction, the solution (v, p, q) of (2.1)
corresponding with (v0, q0, q1) and (F, h)�both obtained from (u0, q0, q1) and (F,w, h)�and associated

to c = UT

(
(u0, q0, q1), (F,w, h)

)
= UT

(
(v0, q0, q1), (F, h)

)
belongs to XT . Moreover, as w and w

ρ0

belongs to H2,1(Q0
T ) (see Remark 3.1 and the de�nition of ρ0 in (2.7)), we have �rst (u, p, q) = (v+w, p, q)

belongs to XT with the expected estimate and second, thanks to w(T ) = 0, that

u(T ) = 0 in Ω0 and q(T ) = q′(T ) = 0.

From now on, the initial data (u0, q0, q1) is �xed in X0 and satis�es (1.15). The time T > 0 is �xed
too. We want to prove the controllability of the system written in the �xed domain (1.10). We use a
�xed point procedure based on the result for the linearized system (3.1).

Lemma 3.3. Let (u, p, q) be the solution in XT of the system (3.1) for the intial data (u0, q0, q1) in
X0 satisfying (1.15) and right-hand sides (F,w, h) in WT , then (F,w, h) = (F[u, p, q],w[u, q], h[u, p, q])
de�ned by (1.8) and (1.9) belongs to WT and there exists a constant C2 such that

‖(F,w, h)‖WT
≤ C2(1 + ‖(u, p, q)‖XT )‖(u, p, q)‖2XT . (3.3)

Furthermore, let (ui, pi, qi) (i = 1, 2) be solutions in XT of system (3.1) with the same initial data
(u0, q0, q1) in X0 satisfying (1.15) and repectively right-hand sides (Fi,wi, hi) (i = 1, 2) in WT . If
(ui, pi, qi) (i = 1, 2) satis�es for some R > 0,

‖(ui, pi, qi)‖XT ≤ R,

then, we have the estimate

‖(F1,w1, h2)− (F2,w2, h2)‖WT
≤ C2(1 +R)R‖(u1, p1, q1)− (u2, p2, q2)‖XT (3.4)

where (Fi,wi, hi) = (F[ui, pi, qi],w[ui, qi], h[ui, qi]) (i = 1, 2).

Proof. First, ρ0 and ρ2 de�ned in (2.21) satisfy
ρ20
ρ2
∈ L∞(0, T ; R). Then, with this, the proof is a

consequence of the de�nition of the right-hand sides F, w in (1.8) and h in (1.9).The estimate of the
WT -norm of (F,w, h) is tedious but straightforward from Proposition 6.1 in [7].

Proposition 3.4. Let (u, p, q) in XT be a solution of the control problem of system (3.1) associated

with (u0, q0, q1), (F,w, h) in WT and the control c = UT

(
(u0, q0, q1), (F,w, h)

)
in L2(0, T ; L2(ω)) (see

Proposition 3.2). Then, system

ut − div σ(u, p) = cχω + F[u, p, q] (Q0
T )

div u = div w[u, q] (Q0
T )

u = Zq′e2 (Σs,0T )
u = 0 (ΣT )

q′′ +Aq = ΠNp+ h[u, q] (0, T )
(u(0), q(0), q′(0)) = (u0, q0, q1)

. (3.5)

is null controllable at time T , that is there exists a control

c = UT

(
(u0, q0, q1), (F[u, p, q],w[u, q], h[u, q])

)
in L2(0, T ; L2(ω)) such that the solution (u, p, q) of system (3.5) corresponding with c belongs to XT and
satis�es

u(T ) = 0 in Ω0, q(T ) = 0, q′(T ) = 0.
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Furthermore, the triplet (u, p, q) satis�es the estimate

‖(u, p, q)‖2XT ≤ C1

(
‖(u0, q0, q1)‖2X0 + C2(1 + ‖(u, p, q)‖XT )‖(u, p, q)‖2XT

)
.

In other terms, we can contruct a mapping

CT : XT −→ XT
(u, p, q) 7−→ CT (u, p, q) = (u, p, q) is the solution of the control problem for system (3.5)

which satis�es the estimate

‖CT (u, p, q)‖2XT ≤ C1

(
‖(u0, q0, q1)‖2X0 + C2(1 + ‖(u, p, q)‖XT )‖(u, p, q)‖2XT

)
. (3.6)

Proof. The proof relies on Proposition 3.2 and estimate (3.3) in the previous lemma. The constants C1

and C2 are de�ned respectively in (3.2) and (3.3).

We now are able to state the main result of this section:

Proposition 3.5. Let (u0, q0, q1) be in X0 satisfying (1.15). Then, there exists r small enough such
that, under condition

‖(u0, q0, q1)‖X0 ≤ r,
system (1.10) is null controllable at time T > 0, that is there exists a control c in L2(0, T ; L2(ω)) such
that system (1.10) associated with this control c admits a solution (u, p, q) in XT satisfying

u(T ) = 0 in Ω0, q(T ) = 0, q′(T ) = 0.

Proof. For (u0, q0, q1) in X0 as above, we denote r = ‖(u0, q0, q1)‖X0 and R = 2C1r (with C1 de�ned in
(3.2)). We choose r such that C2r(1 + 2C1r) = 1 (with C2 de�ned in (3.3)), that is

r =
1

2C2
1C2

1√
1 + 2

C1C2

.

Then, we de�ne a ball of the space XT of radius R as follows:

XRT =
{

(z, ρ, r) ∈ XT s.t. ‖(z, ρ, r)‖XT ≤ R
}
.

Then, CT is a contraction mapping in XRT . Indeed, for two triplets (ui, pi, qi) in XT , by de�nition of
CT , we get �rst that CT (ui, pi, qi) (i = 1, 2) is solution of the control problem of system (1.10) corre-
sponding with initial data (u0, q0, q1), right-hand sides (F[ui, pi, qi],w[ui, qi], h[ui, qi]) and the control

ci = UT

(
(u0, q0, q1), (F[ui, pi, qi],w[ui, qi], h[ui, qi])

)
. This means that CT (ui, pi, qi) (i = 1, 2) sati�es

‖CT (ui, pi, qi)‖XT ≤
R

2
+
R

2
= R.

Furthermore, the di�erence CT (u1, p1, q1)−CT (u2, p2, q2) satisi�es by linearity system (1.10) with (0, 0, 0)
for initial data and (F1,w1, h2) − (F2,w2, h2) for right-hand sides. Then, via the estimates (3.2) in
Proposition 3.2 and (3.4) in Lemma 3.3 and the choice of r, we have

‖CT (u1, p1, q1)− CT (u2, p2, q2)‖XT ≤
1
2
‖(u1, p1, q1)− (u2, p2, q2)‖XT .

For r chosen as above, CT is a contraction mapping from XRT into itself. Then, using the Picard-Banach
�xed point theorem, this mapping admits a �xed point (ũ, p̃, q̃) in XT solution of the control problem
(1.10) corresponding with initial data (u0, q0, q1) in X0

cc, right-hand sides (F[ũ, p̃, q̃],w[ũ, q̃], h[ũ, q̃]) and
the control c = UT

(
(u0, q0, q1), (F[ũ, p̃, q̃],w[ũ, q̃], h[ũ, q̃])

)
. That is exactly (ũ, p̃, q̃) is a solution of (1.10)

in XT and satis�es:
ũ(T ) = 0 in Ω0, q̃(T ) = 0 and q̃′(T ) = 0.
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3.2 In the moving domain.

In this section, we have to check the conditions on the change of variables. That is we have to prove that
the change of variables

φt : Ω0 −→ Ωη(t)

(x, z) 7−→ (x, y)

is well-de�ned as a C1−di�eomorphism from Ω0 into Ωη(t) for every t in [0, T ] and that condition (1.1)
is checked. The regularity of q and of the functions ζk (k = 1, . . . , N) gives together with the formula
of change of variables in section 1.4 that φt is a C1−di�eomorphism. We just need to check assumption
(1.1). Since η(t, x) = Zq, η would satisfy the hypothesis (1.1) if we have an estimate on q like

‖q‖L∞(0,T ;RN ) ≤
1− ε

3‖Z‖L∞(0,L)
.

Indeed, the maximum of the function η in Σs,0T can be roughly bounded by

‖η‖L∞(Σs,0T ) ≤ ‖Z‖L∞(Γs0)‖q‖L∞(0,T ).

Then 1 + η(t, x) ≥ ε for (t, x) ∈ Σs,0T if ‖η‖L∞(Σs,0T ) ≤ 1− ε. Because of the following estimate

‖q‖L∞(0,T ;RN ) ≤ C
∥∥∥∥ q′ρ0

∥∥∥∥
H1(0,T ;RN )

≤ C(‖(u0, q0, q1)‖X0 + ‖(F,w, h)‖WT
),

if both the conditions ‖(u0, q0, q1)‖X0 ≤ r and (F,w, h) ∈ WT such that

‖(F,w, h)‖WT
≤ r

are satis�ed then

‖q‖L∞(0,T ;RN ) ≤ 2Cr ≤ 2(1− ε)
3‖Z‖L∞(0,L)

≤ 1− ε
‖Z‖L∞(0,L)

for r small enough and the hypothesis (1.1) is checked. That is, up to the change of parameter r1 de�ned
by

r1 = min
(
r,

1
C

1− ε
3‖Z‖L∞(0,L)

)
,

instead of r in the previous section, we have the result of Theorem 1.3 and in the same time the assumption
1.1 is checked.

To conclude, we can remark that the control c stated in Theorem 1.3 is exactely the one obtained by
the �xed point procedure in section 3.1. Indeed, the change of variables does not change the subdomain
ω where the control acts. In other words, we have, with obvious notations, φt(c) = c.

4 Proof of Theorem 2.10.

Our goal is to prove an observability inequality for the system

−yt − div σ(y, π) = a (Q0
T )

div y = 0 (Q0
T )

y = Zk2e2 (Σs,0T )
y = 0 (ΣT )
k′1 = k2 − b (0, T )
k′2 = −Ak1 −ΠNπ − c (0, T )

(y(T ), k1(T ), k2(T )) = (0, 0, 0)

(4.1)

The proof of Theorem 2.10 is split into di�erent steps. This steps can be found either in [13, 14] or
in [4]. Let us detail the strategy of the proof.
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Step 1. In section 4.1, we set a �rst Carleman estimate for the system.

Step 2. In sections 4.2 and 4.3, we get rid of the pressure term and local integral terms of the right-hand
side of the previous Carleman estimate via the method of Fernandez-Cara, Guerrero, Imanuvilov
and Puel in [4] itself using [6].

Step 3. Following [14], we get rid of the integral in k1 in the right-hand side of the Carleman estimate
obtained in the previous step (see section 4.4).

Step 4. In section 4.5, we derive the observability inequality from the last Carleman estimate.

The di�erent steps above are very classic in the proof of Carleman estimates. They can be found in
details in the papers cited above, especially in [4, 14]. More precisely, step 1 can be adapted from [4,
section 2], [14, section 3] or [5, section 3]. Steps 2 and 4 are derived from [4] respectively from Steps 3, 4
& 5 in section 2 and from the beginning of section 3. As already mentionned, step 3 is directly adapted
from [14, sections 6 & 7].

We begin with some notations. Let φ be a C2(Ω0) function satisfying

φ(x) > 0, for all x ∈ Ω0, |∇φ(x)| > 0 for all x ∈ Ω0 \ ω0,
φ(x) = C for all x ∈ Γ, ∂nφ(x) ≤ 0 for all x ∈ Γ0,

∂nφ(x) = −1, for all x ∈ Γs0, ∆φ(x) = 0 for all x ∈ Γs0.
(4.2)

We de�ne for a large parameter λ ≥ 1, the functions

ξ(x, t) =
eλ(φ+m‖φ‖∞)

tk(T − t)k
, m > 1

κ(x) = eλmK1 − eλ(φ(x)+m‖φ‖∞), ∀x ∈ Ω0,

where K1 > 0 is a constant such that K1 ≥ 2‖φ‖∞. We set next ϕλ(x, t) = κ(x)
tk(T−t)k and ρ(x, t) = eϕλ(x,t)

where k is a constant number such that k ≥ 2. The number k will be �xed to 4 in section 4.3, following
[4, 14, 5].

Let us de�ne z(x, t) = ρ−s(x, t)y(x, t). System (4.1) written in the variables (z, π, k1, k2) is

M1z +M2z = fs (Q0
T )

div z = −s∇ϕλ · z (Q0
T )

z = ρ−sZk2e2 (Σs,0T )
z = 0 (ΣT )
k′1 = k2 − b (0, T )

k′2 +Ak1 = ΠNπ − c (0, T )
(z(0), k1(0), k2(0)) = (z(T ), k1(T ), k2(T )) = (0, 0, 0)

(4.3)

with

M1z = z′ − 2sν∇ϕλ · ∇z and M2z = sϕ′λz− ν∆z− s2ν|∇ϕλ|2z,
fs = ρ−sa− ρ−s∇π + sν(∆ϕλ)z. (4.4)

Indeed, the calculation of ρ−s
(
∂t − ν∆

)
ρsz = −ρ−s∇π + ρ−sa give the di�erents terms above from

ρ−s∆(ρsz) = s2|∇ϕλ|2z + s∆ϕλz + 2s∇z∇ϕλ + ∆z and ρ−s∂t(ρsz) = s∂tϕλz + z′.

4.1 First Carleman Estimate.

After some calculations, and using the estimate∫ T

0

ρ−2s
Γ (|k′2|2RN + |A1/2k1|2RN ) ≤ C

{∫ T

0

ρ−2s
Γ |ΠNπ|2RN +

∫ T

0

ρ−2s
Γ (|A1/2k1|2RN + |c|2RN )

}
,

we obtain the following Carleman estimate:
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Theorem 4.1. For λ large enough, there is s0(λ) > 0 such that for all s ≥ s0(λ) and for all the solutions
(z, k1, k2) of (4.3), we have

s−1

∫
Q0
T

ξ−1
(
|z′|2 + |∆z|2

)
+
∫
Q0
T

|M1z|2 +
∫
Q0
T

|M2z|2 +
∫
Q0
T

ρ−2s|∇π|2

+sλ2

∫
Q0
T

ξ|∇z|2 + s3λ4

∫
Q0
T

ξ3|z|2 + s3λ3

∫
Σs,0T

ξ3ρ−2s|Zk2|2 +
∫ T

0

ρ−2s
Γ

(
|k′2|2RN + |A1/2k1|2RN

)
≤ C

[∫
Q0
T

ρ−2s|∇π|2 + s3λ4

∫
ω1×(0,T )

ξ3|z|2 +
∫ T

0

ρ−2s
Γ (|A1/2k1|2RN + |c|2RN ) +

∫ T

0

ρ−2s
Γ |ΠNπ|2RN

]
(4.5)

where ω0 ⊂⊂ ω1 ⊂⊂ Ω0.

4.2 First treatment of the pressure term integral.

We need to get rid of the term
∫
Q0
T
ρ−2s|∇π|2 in the righ-hand side of the previous inequality. We follow

the idea of [6, 4]. First, we consider ω2 such that ω1 ⊂⊂ ω2 ⊂⊂ ω. We take π (de�ned up to an additive
constant) such that

∫
ω2
π(t) = 0 for almost every t in (0, T ). Then, after some calculations and using the

equality ∇π = yt + ν∆y + a, we have the following inequality:

I(s, λ; ξ) ≤ C

(
s3λ4

∫
ω2×(0,T )

ξ3|z|2 + s5/2

∫ T

0

(ξ∗)3e−2sϕ∗λ(|A1/2k1|2RN + |k2|2RN )

+
∫ T

0

ρ2
2(t)‖(a(t), b(t), c(t))‖2V +

∫
(0,T )×ω2

s2λ2ξ̂2e−2sϕ̂λ(|a|2 + |∆y|2 + |y′|2)

)
where I(s, λ; ξ) is the left-hand side of inequality (4.5), namely

I(s, λ; ξ) = s−1

∫
Q0
T

ξ−1
(
|z′|2 + |∆z|2

)
+
∫
Q0
T

|M1z|2 +
∫
Q0
T

|M2z|2 +
∫
Q0
T

ρ−2s|∇π|2

+sλ2

∫
Q0
T

ξ|∇z|2 + s3λ4

∫
Q0
T

ξ3|z|2 + s3λ3

∫
Σs,0T

ξ3ρ−2s|Zk2|2 +
∫ T

0

ρ−2s
Γ

(
|k′2|2RN + |A1/2k1|2RN

)
.

4.3 Estimates of the local integrals of ∆y and y′.

The next steps consist in estimating the two local integrals in the right-hand side of the previous inequality.
From now on, we �x k = 4 as in [4, 14, 5]. We denote θ̂(t) = sλξ̂e−sϕ̂λ . First, we have∫

(0,T )×ω2

|θ̂|2|∆y|2 ≤
∫

(0,T )×ω3

|θ̂′(t)|2|y|2 +
∫

(0,T )×ω3

|θ̂(t)|2(|a|2 + |y|2)

for ω3 such that ω2 ⊂⊂ ω3 ⊂⊂ ω. Second∫
(0,T )×ω2

|θ̂|2|y′|2 ≤ C

(∫
(0,T )×ω2

λ2s9/2(ξ∗)9/2e−2sϕ∗λ |y|2 + λ5‖(sξ∗)15/4e−sϕ
∗
λy‖2L2(ω2×(0,T ))

+λ5

∫ T

0

(sξ∗)15/2e−2sϕ∗λ‖(a, b, c)‖2V +
∫ T

0

λ−1s3/2(ξ∗)3/2e−2sϕ∗λ‖(y, k1, k2)‖2V

+
∫ T

0

λ−1s−1ξ̂−1e−2sϕ̂λ‖(y′, k′1, k′2)‖2V

)
.

Combining all the previous estimates, we get that

I(s, λ; ξ) ≤ C

(∫
(0,T )×ω2

λ5(sξ∗)15/2e−2sϕ∗λ |y|2 +
∫

(0,T )×ω2

λ5(sξ∗)15/2e−2sϕ∗λ‖(a, b, c)‖2V

+
∫ T

0

λ−1s3/2(ξ∗)3/2e−2sϕ∗λ‖(y, k1, k2)‖2V +
∫ T

0

λ−1s−1ξ̂−1e−2sϕ̂λ‖(y′, k′1, k′2)‖2V

+s5/2

∫ T

0

(ξ∗)3e−2sϕ∗λ

(
|A1/2k1|2RN + |k2|2RN

))
.

(4.6)
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The terms in the second line and the one depending on k2 in the last line of the right-hand side of
(4.6) can be absorbed in the left-hand side because of the factor λ−1 and estimates on the derivatives of
(y, k1, k2) in Theorem 2.5.

Remember that y = esϕλz, we can rewrite inequality I(s, λ, ξ) in terms of y as follow

I(s, λ; ξ) = s−1

∫
Q0
T

ξ−1ρ−2s
(
|y′|2 + |∆y|2

)
+
∫
Q0
T

ρ−2s|∇π|2 + sλ2

∫
Q0
T

ξρ−2s|∇y|2

+s3λ4

∫
Q0
T

ξ3ρ−2s|y|2 + s3λ3

∫
Σs,0T

ξ3ρ−2s
Γ |Zk2|2 +

∫ T

0

ρ−2s
Γ

(
|k′2|2RN + |A1/2k1|2RN

)
.

(4.7)
Finally, we can sum up all the previous results in the following proposition:

Proposition 4.2. For λ large enough, there is s0(λ) > 0 such that for all s ≥ s0(λ) and for all the
solutions (z, k1, k2) of (4.3), we have

I(s, λ; ξ) ≤ C

(∫
(0,T )×ω2

λ5(sξ∗)15/2e−2sϕ∗λ |y|2 +
∫ T

0

λ5(sξ∗)15/2e−2sϕ∗λ‖(a, b, c)‖2V

+s5/2

∫ T

0

(ξ∗)3e−2sϕ∗λ |A1/2k1|2RN

) (4.8)

where I(s, λ, ξ) has been rede�ned in (4.7).

4.4 Treatment of the integral of k1.

Here, we estimate the term s5/2
∫ T

0
(ξ∗)3e−2sϕ∗λ |A1/2k1|2RN . Using the same idea as in [14, sections 6 & 7],

that is the �nite dimensional setting of the beam equation, we get the following last Carleman estimate:

I(s, λ; ξ) ≤ C

(∫
(0,T )×ω2

λ5(sξ∗)15/2e−2sϕ∗λ |y|2 +
∫ T

0

λ5(sξ∗)15/2e−2sϕ∗λ‖(a, b, c)‖2V

)

for s and λ large enough.

4.5 From the Carleman estimate to the observability inequality.

We introduce here a piecewise continuous function l de�ned in [0, T ] by

l(t) =
{

T 2/4 if t ∈ [0, T/2],
t(T − t) if t ∈ [T/2, T ].

which gives us two new weight functions δ(x, t) = κ(x)
lk(t)

and σ(x, t) = eλ(φ(x)+m‖φ‖∞)

lk(t)
.

We use here the energy estimates for the system (4.1). Namely, we have

‖y‖2L∞(0,T ;L2(Ω0)) + ‖A1/2k1‖2L∞(0,T ;RN ) + ‖k2‖2L∞(0,T ;RN ) + 2ν‖∇y‖2L2(Q0
T )

≤ C
(
‖a‖2L2(Q0

T ) + ‖A1/2b‖2L2(0,T ;RN ) + ‖c‖2L2(0,T ;RN )

)
.

(4.9)

That is, using the notation of the space V de�ned in (2.9), we have

‖(y, k1, k2)‖2L∞(0,T ;V) + 2ν‖∇y‖2L2(Q0
T ) ≤ C

(
‖(a, b, c)‖2L2(0,T ;V)

)
.

We introduce a weight function θ in C1([0, T ]; R) satisfying

θ ≡ 1 in [0, T/2], θ ≡ 0 in [3T/4, T ] and |θ′| ≤ 1/T.
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Let us now consider the system satis�ed by (θy, θπ, k1, k2) = (y∗, π∗, k1, k2):

−y∗t − div σ(y∗, π∗) = θa− θ′y (Q0
T )

div y∗ = 0 (Q0
T )

y∗ = θZk2e2 (Σs,0T )
y∗ = 0 (ΣT )
θk′1 = θk2 − θb (0, T )

θk′2 + θAk1 = −ΠNπ
∗ − θc (0, T )

(y(T ), k1(T ), k2(T )) = (0, 0, 0)

(4.10)

By some integrations by parts, and thanks to (4.9), we get the energy estimate of system (4.10):∥∥∥(y, k1, k2

)∥∥∥2

L2(0,T/2;V)
+
∥∥∥(y, k1, k2

)∥∥∥2

L∞(0,T/2;V)
+ ν‖∇y‖2L2(0,T/2;L2(Ω0)) ≤ C

∥∥∥(a, b, c)∥∥∥2

L2(0,3T/4;V)
.

(4.11)
Because the weigths δ and σ are constant in time on [0, T/2] and the weights in s and λ are bigger in the
right-hand side than in the left-hand side, this gives in particular,∥∥∥(y(0), k1(0), k2(0)

)∥∥∥2

V
+ s3λ4

∫ T/2

0

∫
Ω0

e−2sδσ3|y|2

+sλ2

∫ T/2

0

∫
Ω0

e−2sδσ|∇y|2 + s3λ3

∫ T/2

0

e−2sδσ3|k2|2RN

≤ C

[∫ T/2

0

λ5(sσ∗)15/2e−2sδ∗‖(a, b, c)‖2V

]
.

(4.12)

On the other hand, the Carleman estimate (4.8) in Proposition 4.2 gives, because δ = ϕλ and ξ = σ for
t in [T/2, T ], the same result:

sλ2

∫ T

T/2

∫
Ω0

σ|∇y|2e−2sδ + s3λ4

∫ T

T/2

∫
Ω0

σ3|y|2e−2sδ + s3λ3

∫ T

T/2

∫
Γs0

σ3e−2sδ|k2|2RN

≤ C

(∫ T

T/2

∫
ω2

λ5(sσ∗)15/2e−2sδ∗ |y|2 +
∫ T

T/2

λ5(sσ∗)15/2e−2sδ∗‖(a, b, c)‖2V

)
.

(4.13)

Finally, adding inequalities (4.12) and (4.13), we get the expected observability inequality∥∥∥(y(0), k1(0), k2(0)
)∥∥∥2

V
+ s3λ3

∫ T

0

σ∗3(t)e−2sδ∗(t)
(
‖y(t)‖2L2(Ω0) + |k2|2RN

)
≤ C

(∫ T

0

λ5(sσ∗(t))15/2e−2sδ∗(t)‖(a(t), b(t), c(t))‖2V +
∫ T

0

λ5(sσ∗(t))15/2e−2sδ∗(t)‖y‖2L2(ω2)

)
.
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