

MATHS ET JEUX

LE JEU DES TAPIS DE COURSE

Julien Bernat

Université de Lorraine

Institut Elie Cartan de Lorraine, site de Nancy / ÉSPÉ de Lorraine

Nous publions à nouveau cet article en raison d'un incident survenu dans la mise en page du Petit Vert n°139, privant le lecteur d'une partie du texte. Nous renouvelons nos excuses à Julien Bernat.

Cette activité utilise du matériel qu’il faut prévoir en assez grande quantité : deux types de pièces carrées de mêmes dimensions, qu’on appelle pièce V (pour Virage) et pièce D (pour ligne Droite). On pourra par exemple fabriquer le matériel de sorte que toutes les pièces aient pour longueur de côté 5 centimètres pour une manipulation sur une table, ou de plusieurs dizaines de centimètres pour une manipulation au sol.

Les éléments présentés ici ont déjà été employés par François Boule, voir par exemple l’article de François Drouin dans le *Petit Vert n°129, pages 52-59* ; on pourra les retrouver dans un document déposé sur [un site de l’académie d’Amiens](https://example.com).

Début de l’activité : le professeur laisse un groupe d’élèves découvrir le matériel (par exemple un tas a été constitué avec 7 pièces D et 9 pièces V ; les valeurs ne sont pas importantes, il faut juste que le nombre de pièces de chaque type ne soit pas trop petit). On peut imaginer qu’il n’y a initialement aucune question, et qu’après quelques instants de première manipulation, le professeur amène les élèves à s’exprimer par un jeu de questionnements : « que voyez-vous ? », « comment décririez-vous ces pièces ? », « à votre avis, que peut-on essayer de faire avec ? », etc. un premier objectif raisonnable étant de faire formuler une question de nature mathématique.

Fabrication de circuits

Les élèves peuvent comprendre assez vite que l’on peut fabriquer des circuits (fermés) en disposant convenablement les tapis côté à côté. Le plus petit que l’on peut réaliser est constitué de 4 tapis V qui forment un cercle. En « coupant » ce circuit en deux moitiés, on pourrait ajouter 2 tapis D (puis en ajouter deux autres, puis encore deux autres, et on peut iterer autant de fois que l’on veut !).

Cela doit faire apparaître naturellement les questions suivantes : pour quels nombres de tapis D et de tapis V est-il possible de réaliser un circuit ? Pour quels nombres de tapis D et de tapis V est-on certain que l’on ne peut pas réaliser un circuit ?

Au cours de la recherche, on va identifier des nombres de tapis D et de tapis V pour lesquels on n’est pas certain qu’il soit possible de réaliser un circuit, et vraisemblablement la question ne sera pas résolue en fin d’activité. L’activité doit permettre de dégager les idées de conjecture.

Retour au sommaire
(« j’observe/il me semble que... »), de condition nécessaire et suffisante (« si l’on dispose de [ce nombre de] pièces de tel type, alors je suis certain que ... »).
On peut remarquer que l’on est ici dans un cadre constructiviste, puisque l’existence d’un circuit s’obtient par la réalisation explicite de ce circuit.

Règles de construction
On peut poser sur cette situation une mise en contexte qui fait travailler différents aspects mathématiques de la façon suivante. Les élèves sont maintenant placés dans le rôle d’un ingénieur qui doit diriger la construction d’un circuit. Il dispose initialement d’un certain capital (par exemple 100). La construction d’un virage coûte un certain prix fixe (par exemple 11) et celle d’une ligne droite également un certain prix fixe qui peut être différent (par exemple 14). L’activité de recherche semble la plus intéressante lorsque les élèves peuvent acheter « environ » une dizaine de pièces et que l’on peut identifier 3 ou 4 choix différents, il faut alors décider comment établir le meilleur choix (par exemple en utilisant la plus grande somme possible).
Remarque : les valeurs 11 et 14 peuvent être changées, toutefois celles-ci n’ont pas été choisies au hasard. Le rapport exact entre la longueur du quart de tour passant par le milieu des côtés et celle de la ligne droite est $\frac{\pi}{4}$; en utilisant la valeur approchée bien connue de π qui est $\frac{22}{7}$, cela signifie que l’on construit à peu près autant de routes avec 14 tapis V qu’avec 11 tapis D.
Il s’agit de répondre à une double problématique :
- Avec une somme donnée, quelles pièces est-il possible de commander ?
- Avec ces pièces, est-il possible de fabriquer un circuit ?

En première approche, il faut fixer des petites valeurs pour une bonne approximation du problème. Puis on conserve les valeurs de coût pour les pièces et on augmente la somme donnée. Étude du problème : on peut construire une représentation sous forme de tableau afin d’identifier les coûts en fonction du nombre de chaque type de pièce (il semble intéressant de laisser les élèves remplir ce tableau).

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>11</th>
<th>22</th>
<th>33</th>
<th>44</th>
<th>55</th>
<th>66</th>
<th>77</th>
<th>88</th>
<th>99</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>25</td>
<td>36</td>
<td>47</td>
<td>58</td>
<td>69</td>
<td>80</td>
<td>91</td>
<td>102</td>
<td>113</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>39</td>
<td>50</td>
<td>61</td>
<td>72</td>
<td>83</td>
<td>94</td>
<td>105</td>
<td>116</td>
<td>127</td>
<td>138</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>53</td>
<td>64</td>
<td>75</td>
<td>86</td>
<td>97</td>
<td>108</td>
<td>119</td>
<td>130</td>
<td>141</td>
<td>152</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>67</td>
<td>78</td>
<td>89</td>
<td>100</td>
<td>111</td>
<td>122</td>
<td>133</td>
<td>144</td>
<td>155</td>
<td>166</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>81</td>
<td>92</td>
<td>103</td>
<td>114</td>
<td>125</td>
<td>136</td>
<td>147</td>
<td>158</td>
<td>169</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>95</td>
<td>106</td>
<td>117</td>
<td>128</td>
<td>139</td>
<td>150</td>
<td>161</td>
<td>172</td>
<td>183</td>
<td>194</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>109</td>
<td>120</td>
<td>131</td>
<td>142</td>
<td>153</td>
<td>164</td>
<td>175</td>
<td>186</td>
<td>197</td>
<td>208</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>123</td>
<td>134</td>
<td>145</td>
<td>156</td>
<td>167</td>
<td>178</td>
<td>189</td>
<td>200</td>
<td>211</td>
<td>222</td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>137</td>
<td>148</td>
<td>159</td>
<td>170</td>
<td>181</td>
<td>192</td>
<td>203</td>
<td>214</td>
<td>225</td>
<td>236</td>
<td></td>
</tr>
</tbody>
</table>

Si par exemple la somme disponible est de 119, il faut chercher dans ce tableau si 119 apparait. Si ce n’est pas le cas, il faut rechercher la plus grande valeur possible qui lui est inférieure. Et pour cette valeur, il faut ensuite déterminer si l’on peut fabriquer (au moins) un circuit avec les pièces commandées. Si on ne parvient pas à construire le circuit, on passe à une valeur encore plus petite, etc.
Comme annoncé précédemment, l’étude de la réalisation d’un circuit pour des nombres connus de tapis de chaque type est plus compliquée et sa résolution complète ne saurait être attendue par les élèves. Indiquons pour les professeurs que cela mobilise des outils du cadre algébrique et qu’il faut également prendre en compte quelques contraintes locales. On peut dégager en particulier les propriétés suivantes :
(a) tout circuit doit contenir au moins 4 virages,
(b) tout circuit doit contenir un nombre pair de virages,
(c) tout circuit doit contenir un nombre pair de lignes droites,
(d) si l'on peut construire un circuit fermé avec d lignes droites et v virages, alors on peut construire un circuit fermé avec d+2 lignes droites et v virages,
(e) s'il n'y a aucune ligne droite, les circuits possibles sont ceux constitués d'un nombre de virage qui est un multiple de 4 non nul et différent de 8,
(f) avec 2 lignes droites, on peut construire un circuit avec v virages si et seulement si v est pair et supérieur ou égal à 4.

Nous ne démontrerons pas l’ensemble de ces points (le lecteur aura compris que cela lui est laissé en exercice 1). Revenons tout de même sur le point (c) : on imagine que l’on dispose un circuit sur un quadrillage, aussi chaque pièce est identifiée par des coordonnées entières, une pièce jouant le rôle de point de départ, et donc aussi d’arrivée, pour une petite voiture qui parcourt l’intégralité du circuit dans le sens de son choix. À chaque fois que la voiture quitte une pièce pour une autre, la quantité abscisse + ordonnée augmente ou diminue de 1, donc sa parité change. Comme la case d’arrivée est aussi celle de départ, cela implique que le nombre total de changement de parité est pair, et ce nombre correspond au nombre total de pièces. On obtient de la sorte le point (c) comme une conséquence du point (b).
Finissons par une considération non purement mathématique : on peut aussi laisser libre court à l’imagination des élèves et admirer les productions car, pour les circuits pouvant être constitués avec un nombre de pièces de chaque type donné, le nombre de possibilités croît rapidement et on obtient une multitude de dessins bien différents, pouvant satisfaire une forte régularité ou au contraire se montrer bien désordonnés !

Prolongements possibles

Il existe diverses façons de généraliser l’activité de recherche présentée ici, et il faut être conscient que dans la plupart des cas, le niveau de difficulté de l’étude des circuits possibles augmente rapidement. On peut par exemple envisager :

1. de changer les routes possibles,
2. de changer la forme des pièces,
3. de changer la nature de l'espace de travail,
4. d’augmenter la dimension de l’espace de travail.

Pour le premier point, on peut utiliser les pièces de François Boule qui ont été jusqu’ici mises de côté : les tapis « T » (avec un embranchement au milieu d’un carré et trois côtés concernés par une sortie de route) et les tapis « X » (un carrefour et tous les côtés concernés par une sortie de route).
On peut alors reprendre les questions précédemment abordées dans un contexte plus large.
Une autre adaptation consiste à remarquer que jusqu'à présent, tous les tapis utilisés ont des routes qui passent par les milieux de leurs côtés ; si l'on se soustrait à cette obligation, cela permet de différencier de nouvelles pièces. Et pourquoi pas créer des tunnels ou des ponts pour encore plus de circuits...

Pour le deuxième point, on peut remplacer les carrés par des hexagones. Il y a des hexagones avec une ligne droite (D), les virages larges (L) et les virages sérres (S).

On pourra noter qu'il est possible de créer des pièces contenant plusieurs routes, par exemple une pièce que l'on appellerait LL, ou LS, ou encore SS (deux configurations distinctes possibles). Le troisième point amènerait à considérer des circuits construits par exemple sur des cylindres ou des tores (que l'on peut laisser sur une surface plane habituelle en identifiant des bords). On peut remarquer que la propriété (a) n'est plus valable dans ce cas, puisque l'on peut obtenir un circuit fermé sans aucun virage sur de telles surfaces. Enfin, si l'on remplace les pièces carrées par des pièces cubiques, avec des routes pouvant joindre deux faces opposées ou deux faces adjacentes, le lecteur pourra vérifier que les propriétés (b) et (c) ne sont plus satisfaits : il existe un circuit dans l'espace formé avec 1 « ligne droite de l'espace » et 7 « virages de l'espace ». C'est une conséquence du fait que, contrairement au plan, il n'y a plus nécessairement alternance entre deux directions possibles lorsqu'on utilise à la suite plusieurs virages.

Le lecteur trouvera [ici des pièces prêtes à découper téléchargeables](#).