Spectral analysis and stabilization of a chain of serially connected Euler-Bernoulli beams and strings

Kaïs Ammari ∗, Denis Mercier †, Virginie Régnier †
and
Julie Valein ‡

Abstract. We consider N Euler-Bernoulli beams and N strings alternatively connected to one another and forming a particular network which is a chain beginning with a string. We study two stabilization problems on the same network and the spectrum of the corresponding conservative system: the characteristic equation as well as its asymptotic behavior are given. We prove that the energy of the solution of the first dissipative system tends to zero when the time tends to infinity under some irrationality assumptions on the length of the strings and beams. On another hand we prove a polynomial decay result of the energy of the second system, independently of the length of the strings and beams, for all regular initial data. Our technique is based on a frequency domain method and combines a contradiction argument with the multiplier technique to carry out a special analysis for the resolvent.

2010 Mathematics Subject Classification. 35L05, 35M10, 35R02, 47A10, 93D15, 93D20.

Key words and phrases. Network, wave equation, Euler-Bernoulli beam equation, spectrum, resolvent method, feedback stabilization.

∗Département de Mathématiques, Faculté des Sciences de Monastir, 5019 Monastir, Tunisie, e-mail: kais.ammari@fsm.rnu.tn,
†Univ Lille Nord de France, F-59000 Lille, France, UVHC, LAMAV, FR CNRS 2956, F-59313 Valenciennes, France, email: denis.mercier@univ-valenciennes.fr, virginie.regnier@univ-valenciennes.fr
‡Institut Elie Cartan Nancy (IECN), Nancy-Université & INRIA (Project-Team CORIDA), B.P. 70239, F-54506 Vandoeuvre-lès-Nancy Cedex France, email: julie.valein@iecn.u-nancy.fr
1 Introduction

In this paper we study two feedback stabilization problems for a string-beam network. In the following, only chains will be considered as mathematically described in Section 5 of [25] (see also [26] and Figure 1).

Following Ammari/Jellouli/Mehrenberger ([10]), we study a linear system modelling the vibrations of a chain of alternated Euler-Bernoulli beams and strings but with N beams and N strings (instead of one string-one beam in [10]). For each edge k_j (representing a string if j is odd and a beam if j is even) of the chain, the scalar function $u_j(x,t)$ for $x \in (0,l_j)$ and $t > 0$ contains the information on the vertical displacement of the string if j is odd and of the beam if j is even ($1 \leq j \leq 2N$), where $l_j > 0$ is the length of the edge k_j.

More precisely we consider the evolution problems (P_1) and (P_2) described by the fol-
lowing systems of $2N$ equations:

$$(P_1) \begin{cases}
(\partial_t^2 u_{2j-1} - \partial_x^2 u_{2j-1})(t, x) = 0, \quad x \in (0, l_{2j-1}), \quad t \in (0, \infty), \quad j = 1, \ldots, N, \\
(\partial_t^2 u_{2j} + \partial_x^2 u_{2j})(t, x) = 0, \quad x \in (0, l_{2j}), \quad t \in (0, \infty), \quad j = 1, \ldots, N, \\
u_1(t, 0) = 0, \quad u_{2N}(t, l_{2N}) = 0, \quad t \in (0, \infty), \\
(\partial_t^2 u_{2j})(t, 0) = \frac{\partial_t^2 u_{2j}}{t, l_{2j}}(t, 0) = 0, \quad t \in (0, \infty), \quad j = 1, \ldots, 2N - 1, \\
(\partial_t^2 u_{2j})(t, l_{2j}) + \partial_x u_{2j-1}(t, l_{2j-1}) = - \partial_t u_{2j-1}(t, l_{2j-1}), \quad t \in (0, \infty), \quad j = 1, \ldots, N, \\
u_j(0, x) = u_j^0(x), \quad \partial_t u_j(0, x) = u_j^1(x), \quad x \in (0, l_j), \quad j = 1, \ldots, 2N,
\end{cases}
$$

and

$$(P_2) \begin{cases}
(\partial_t^2 u_{2j-1} - \partial_x^2 u_{2j-1})(t, x) = 0, \quad x \in (0, l_{2j-1}), \quad t \in (0, \infty), \quad j = 1, \ldots, N, \\
(\partial_t^2 u_{2j} + \partial_x^2 u_{2j})(t, x) = 0, \quad x \in (0, l_{2j}), \quad t \in (0, \infty), \quad j = 1, \ldots, N, \\
u_1(t, 0) = 0, \quad u_{2N}(t, l_{2N}) = 0, \quad \partial_x^2 u_{2N}(t, l_{2N}) = 0, \quad t \in (0, \infty), \\
(\partial_t^2 u_{2j})(t, 0) = \frac{\partial_t^2 u_{2j}}{t, l_{2j}}(t, 0), \quad t \in (0, \infty), \quad j = 1, \ldots, N, \\
(\partial_t^2 u_{2j})(t, l_{2j}) + \partial_x u_{2j-1}(t, l_{2j-1}) = - \partial_t u_{2j-1}(t, l_{2j-1}), \quad t \in (0, \infty), \quad j = 1, \ldots, N, \\
u_j(0, x) = u_j^0(x), \quad \partial_t u_j(0, x) = u_j^1(x), \quad x \in (0, l_j), \quad j = 1, \ldots, 2N - 1,
\end{cases}
$$

Models of the transient behavior of some or all of the state variables describing the motion of flexible structures have been of great interest in recent years, for details about physical motivation for the models, see [13], [19], [21] and the references therein.

Transmission problems on networks can be viewed as special cases of interaction problems or problems on multistructures. They have been studied since the 1980ies for example by J.P. Roth, J.v. Below, S. Nicaise, F. Ali Mehmeti. They use the terminology of networks which had been fixed in earlier contributions of Lumer and Gramsch.

For an outline of recent developments see [1]. Mathematical analysis of transmission partial differential equations is also detailed in [21].

Moreover, the control, observation and stabilization problems of networks have been the object of intensive research (see [19, 21, 35] and the references therein). These works use results from several domains: non-harmonic Fourier series, Diophantine approximations, graph theory, wave propagation techniques.
In [19] and in [17, 18], controllability results for the wave equation on networks are proved by showing observability inequalities and under assumptions about the irrationality properties of the ratios of the lengths of the string. One should mention that in these works, the control is only applied at one single end of the network.

Stabilization results for the wave equation on networks have been considered by several authors in some particular situations. We refer, for instance, to [5, 8, 9, 10], where explicit decay rates are obtained for networks with some special structures. We also refer to [27] where the problem is considered in the presence of delay terms in the feedback law. In [32] the aim is to develop a systematic method for the stabilization of the general network by means of a damping term located on one single exterior node. The authors obtain the explicit decay estimates (in general weaker than exponential) of the energy for smooth initial data which depend on the geometric and topological properties of the network.

On the other hand the controllability and stabilization for the beam equation on 1-d network have been studied for instance in [2, 4, 6, 34]. In the papers [24], [25], the authors studied the boundary controllability of a network of Euler-Bernoulli beams: a numerical method is given to determine if controllability holds for some networks. Then, in [26], a chain of serially connected Euler-Bernoulli beams with interior masses is considered and using the exterior matrix method due to Paulsen ([28]), we establish exact controllability.

Finally, concerning the stabilization of Euler-Bernoulli beams and strings on networks, we refer to [10], where a stabilization problem for a coupled string-beam system is considered, and to [33] for the study of the strong stability of a star-shaped coupled network of strings and beams. We refer also to [11] where the authors study the same problem as in [10] in higher dimensions.

Our aim is to study the spectrum of the conservative spatial operator which is defined in Section 3 and to obtain stability results for (P_1) and (P_2).

We define the natural energy $E(t)$ of a solution $\mathbf{u} = (u_1, ..., u_{2N})$ of (P_1) or (P_2) by

$$E(t) = \frac{1}{2} \sum_{j=1}^{N} \left(\int_0^{l_{2j-1}} (|\partial_t u_{2j-1}(t, x)|^2 + |\partial_x u_{2j-1}(t, x)|^2) \, dx + \int_0^{l_{2j}} (|\partial_t u_{2j}(t, x)|^2 + |\partial_x^2 u_{2j}(t, x)|^2) \, dx \right).$$

(1.1)
We can easily check that every sufficiently smooth solution of \((P_1)\) satisfies the following dissipation law
\[
E'(t) = - \sum_{j=1}^{2N-1} |\partial_t u_j(t, l_j)|^2 \leq 0,
\]
and therefore, the energy is a nonincreasing function of the time variable \(t\).

The first result concerns the well-posedness of the solutions of \((P_1)\) and the decay of the energy \(E(t)\) of the solutions of \((P_1)\). We also study the spectrum of the corresponding conservative system. We give, in particular, the characteristic equation and the asymptotic behavior of the eigenvalues of the corresponding conservative system. We deduce that the generalized gap condition holds: if we denote by \((\lambda_n)_{n \in \mathbb{N}^*}\) the sequence of eigenvalues counted with their multiplicities, then
\[
\exists \gamma > 0, \forall n \geq 1, |\lambda_{n+2N} - \lambda_n| \geq \gamma. \tag{1.3}
\]
Contrary to [10], it seems that the (simple) gap condition fails in general (for any \(N \geq 2\)). Therefore we do not succeed to obtain an observability inequality (and then to deduce stability results for \((P_1)\)) directly by the study of the spectrum and the eigenvectors (see, for instance, [27]). In fact, the difficulties are to locate precisely the type of eigenvalues in the packets.

However, we prove that the energy \(E(t)\) of the solutions of \((P_1)\) tends to zero when \(t \to + \infty\) in an appropriate energy space (described later), under some assumptions about the irrationality properties of the length of the strings and beams. For that, we use a result from [12].

As we do not succeed to obtain the explicit decay rate to zero of the energy of the solutions of \((P_1)\), we change a little the system, by considering more dissipation conditions. That is why we introduce in problem \((P_2)\), in addition, the following dissipation conditions
\[
\begin{align*}
\partial_x^2 u_{2j}(t, 0) &= \partial_x^2 u_{2j}(t, 0), & t \in (0, \infty), & j = 1, ..., N, \\
\partial_x^2 u_{2j}(t, l_{2j}) &= -\partial_x^2 u_{2j}(t, l_{2j}), & t \in (0, \infty), & j = 1, ..., N - 1.
\end{align*}
\]
In this case, we are able to prove more interesting stability results for system \((P_2)\) and to give the explicit decay rate of the energy of the solutions of \((P_2)\) in an appropriate space.
In the same manner as previously and with the same energy $E(t)$ (defined by (1.1)), every sufficiently smooth solution of (P_2) satisfies the following dissipation law

$$E'(t) = -\sum_{j=1}^{2N-1} |\partial_t u_j(t, l_j)|^2 - \sum_{j=1}^{N-1} |\partial^2_{tx} u_{2j}(t, l_{2j})|^2 - \sum_{j=1}^{N} |\partial^2_{tx} u_{2j}(t, 0)|^2 \leq 0, \quad (1.4)$$

and therefore, the energy is a nonincreasing function of the time variable t.

The main result of this paper then concerns the precise asymptotic behavior of the solutions of (P_2). As it was shown in [10] in the case of one string and one beam connected together (i.e. $N = 1$), we can not expect to obtain an exponential decay rate of the solutions of (P_2). However we are able to prove that the decay rate to zero of the energy is $1/t^2$, independently of the length of the strings and beams and by taking more regular initial data in an appropriate space. Our technique is based on a frequency domain method from [16] and combines a contradiction argument with the multiplier technique to carry out a special analysis for the resolvent.

This paper is organized as follows: In Section 2, we give the proper functional setting for systems (P_1) and (P_2) and prove that these two systems are well-posed. In Section 3, we study the spectrum of the corresponding conservative system and we give the asymptotic behavior of the eigenvalues. We then show that the energies of systems (P_1) and (P_2) tend to zero. Finally, in Section 4, we study the stabilization result for (P_2) by the frequency domain technique and give the explicit decay rate of the energy of the solutions of (P_2).

Acknowledgements

The authors are very grateful to the referees for their valuable comments and suggestions.
2 Well-posedness of the systems

In order to study systems (P_1) and (P_2) we need a proper functional setting. We define the following space

$$V = \left\{ u = (u_1, ..., u_{2N}) \in \prod_{j=1}^{N} (H^1(0, l_{2j-1}) \times H^2(0, l_{2j})) , \right. $$

$$
\left. u_j(l_j) = u_{j+1}(0), j = 1, ..., 2N-1, \right. $$

$$
\left. u_1(0) = 0, u_{2N}(l_{2N}) = 0 \right\}. $$

We consider on V the sesquilinear form defined by

$$< u, \tilde{u} > V = \sum_{j=1}^{N} \left(\int_{0}^{l_{2j-1}} \partial_x u_{2j-1}(x) \partial_x \tilde{u}_{2j-1}(x) dx + \int_{0}^{l_{2j}} \partial_x^2 u_{2j}(x) \partial_x^2 \tilde{u}_{2j}(x) dx \right). \quad (2.5)$$

Lemma 2.1. The number 0 is an eigenvalue associated with (P_1) and (P_2) of multiplicity $N - 1$, i.e. there exists a subspace of V of dimension $N - 1$ such that any ϕ in this subspace satisfies

$$\begin{align*}
\frac{\partial^2 \phi_{2j-1}(x)}{\partial x^2} &= 0, \quad x \in (0, l_{2j-1}), \quad j = 1, ..., N, \\
\frac{\partial^2 \phi_{2j}(x)}{\partial x^2} &= 0, \quad x \in (0, l_{2j}), \quad j = 1, ..., N, \\
\phi_{1}(0) &= 0, \quad \phi_{2N}(l_{2N}) = 0, \\
(EP_0) \quad \frac{\partial^2 \phi_{2j}(0)}{\partial x^2} = \frac{\partial^2 \phi_{2j}(l_{2j})}{\partial x^2} = 0, \quad j = 1, ..., N, \\
\phi_{j}(l_{j}) &= \phi_{j+1}(0), \quad j = 1, ..., 2N - 1, \\
\frac{\partial^2 \phi_{2j}(0)}{\partial x^2} + \partial_x \phi_{2j-1}(l_{2j-1}) &= 0, \quad j = 1, ..., N, \\
\frac{\partial^2 \phi_{2j}(l_{2j})}{\partial x^2} + \partial_x \phi_{2j+1}(0) &= 0, \quad j = 1, ..., N.
\end{align*}$$

Proof. Let ϕ be a non-trivial solution of (EP_0). By the first two equations of (EP_0), for $j \in \{1, \cdots, N\}$, ϕ_{2j-1} is a first order polynomial and ϕ_{2j} is a third order polynomial. Moreover, with the fourth equation of (EP_0), ϕ_{2j} also is a first order polynomial. The last two equations of (EP_0) become

$$\partial_x \phi_{2j-1}(0) = \partial_x \phi_{2j-1}(l_{2j-1}) = 0, \quad j = 1, \cdots, N.$$

Consequently there exists $b_{2j-1} \in \mathbb{C}$ such that $\phi_{2j-1} = b_{2j-1}$ for $j \in \{1, \cdots, N\}$. The third equation of (EP_0) implies $b_1 = 0$. Moreover we find, by the fifth equation of (EP_0), that

$$\phi_{2j}(x) = \frac{b_{2j+1} - b_{2j-1}}{l_{2j}} x + b_{2j-1}, \quad x \in (0, l_{2j}), \quad j = 1, \cdots, N,$$
where we set \(b_{2N+1} = 0 \).

The function \(\phi \) defined above with \((b_3, b_5, \ldots, b_{2N-1}) \in \mathbb{C}^{N-1}\) then satisfies \((EP_0)\), which finishes the proof.

It is well-known that system \((P_1)\) may be rewritten as the first order evolution equation

\[
\begin{cases}
U' = A_1 U, \\
U(0) = (u^0, u^1) = U_0,
\end{cases}
\]

where \(U \) is the vector

\[
U = (u, \partial_t u)^t
\]

and the operator \(A_1 \) is defined by

\[
A_1(u, v) = (v, (\partial_x^2 u_{2j-1}, -\partial_x^2 u_{2j})_{1 \leq j \leq N})^t,
\]

with

\[
Y_1 := \left\{ (u, v) \in \left(\prod_{j=1}^{N} (H^2(0, l_{2j-1}) \times H^4(0, l_{2j})) \right) \cap V \times V \right. \\
satisfying \ (2.7) \ to \ (2.10) \ hereafter \left\}
\]

\[
\partial_x^2 u_{2N}(l_{2N}) = 0 \tag{2.7}
\]

\[
\partial_x^2 u_{2j}(0) = 0 \quad j = 1, \ldots, N \quad \text{and} \quad \partial_x^2 u_{2j}(l_{2j}) = 0, \quad j = 1, \ldots, N - 1 \tag{2.8}
\]

\[
\partial_x^2 u_{2j}(0) + \partial_x u_{2j-1}(l_{2j-1}) = -v_{2j-1}(l_{2j-1}), \quad j = 1, \ldots, N \tag{2.9}
\]

\[
\partial_x^3 u_{2j}(t, l_{2j}) + \partial_x u_{2j+1}(0) = v_{2j}(l_{2j}), \quad j = 1, \ldots, N - 1. \tag{2.10}
\]

It is clear that \(< \ldots >_V \) does not define a norm for \(V \) but only a semi-norm since, for all \(u \in V \), we have \(< u, u >_V = 0 \) if and only if \(u \) satisfies \((EP_0)\). In order to get an appropriate Hilbert setting we denote by \(E_0 \) the eigenspace of \(A_1 \) associated with the eigenvalue 0, i.e.

\[
E_0 = \left\{ (\phi, 0) \in V \times \prod_{j=1}^{2N} L^2(0, l_j) : \phi \text{ satisfies } (EP_0) \right\},
\]

and \(P_{0,1} : V \times \prod_{j=1}^{2N} L^2(0, l_j) \to E_0 \) the projection onto \(E_0 \) defined by

\[
P_{0,1} = \frac{1}{2\pi i} \oint_{\gamma} (\lambda I - A_1)^{-1} d\lambda,
\]

where \(\gamma \) is a simple closed curve enclosing only the eigenvalue 0 (see Theorem III-6.17 of [20]). We can easily verify that \(E_0 = P_{0,1}(V \times \prod_{j=1}^{2N} L^2(0, l_j)) \), since some calculations
show that we can not find \((u, v)^t \in \text{Ker}(A_2^2) \setminus \text{Ker}(A_1)\). Now let \(H_1\) be the Hilbert space defined by

\[
V \times \prod_{j=1}^{2N} L^2(0, l_j) = E_0 \oplus H_1,
\]

where \(H_1 = (I - P_{0,1})(V \times \prod_{j=1}^{2N} L^2(0, l_j))\). Then \(P_{0,1}\) is the projection onto \(E_0\) parallel to \(H_1\). Note that, if \(N = 1\), \(H_1 = V \times \prod_{j=1}^{2N} L^2(0, l_j)\) and only in that case.

Now \(H_1\) is a Hilbert space, equipped with the usual inner product

\[
\langle \begin{pmatrix} u \\ v \end{pmatrix}, \begin{pmatrix} \tilde{u} \\ \tilde{v} \end{pmatrix} \rangle_{H_1} = \sum_{j=1}^{N} \left(\int_0^{l_{2j-1}} \left(v_{2j-1}(x) \overline{\tilde{v}_{2j-1}(x)} + \partial_x u_{2j-1}(x) \partial_x \overline{\tilde{u}_{2j-1}(x)} \right) dx
+ \int_0^{l_{2j}} \left(v_{2j}(x) \overline{\tilde{v}_{2j}(x)} + \partial_x^2 u_{2j}(x) \partial_x^2 \overline{\tilde{u}_{2j}(x)} \right) dx \right).
\]

Now we consider the operator \(A_1\) restricted to the space \(H_1 \cap Y_1\) with value in \(H_1\), that is meaningful since \(A_1\) commutes with \(P_{0,1}\). By abuse of notation, this operator will be denoted by \(A_1\) and \(D(A_1)\) will be its domain, i.e.

\[
D(A_1) := H_1 \cap Y_1.
\]

Therefore

\[
A_1 : D(A_1) \to H_1.
\]

Moreover the norm on \(D(A_1)\) is defined by

\[
|||(u, v)^t|||^2_{D(A_1)} = |||A_1(u, v)|||^2_{H_1} + |||(u, v)|||^2_{H_1}.
\]

Note that, with all these notation, problem \((P_1)\) is rewritten in an abstract way as: find \((u, v)^t \in D(A_1)\) such that \((u, v)^t = A_1(u, v)^t\).

Now we can prove the well-posedness of system \((P_1)\) and that the solution of \((P_1)\) satisfies the dissipation law \((1.2)\).

Proposition 2.2. (i) For an initial datum \(U_0 \in H_1\), there exists a unique solution \(U \in C([0, +\infty), H_1)\) to problem \((2.6)\). Moreover, if \(U_0 \in D(A_1)\), then

\[
U \in C([0, +\infty), D(A_1)) \cap C^1([0, +\infty), H_1).
\]

(ii) The solution \(u\) of \((P_1)\) with initial datum in \(D(A_1)\) satisfies \((1.2)\). Therefore the energy is nonincreasing.
Proof. (i) By Lumer-Phillips’ theorem (see [29, 31]), it suffices to show that \(A_1 \) is dissipative and maximal.

We first prove that \(A_1 \) is dissipative. Take \(U = (u, v)^t \in D(A_1) \). Then

\[
\langle A_1 U, U \rangle_{\mathcal{H}_1} = \sum_{j=1}^{N} \left(\int_0^{l_{2j-1}} \left(\partial_x^2 u_{2j-1}(x)v_{2j-1}(x) + \partial_x v_{2j-1}(x)\partial_x u_{2j-1}(x) \right) \, dx \
+ \int_0^{l_{2j}} \left(-\partial_x^2 u_{2j}(x)v_{2j}(x) + \partial_x^2 v_{2j}(x)\partial_x u_{2j}(x) \right) \, dx \right).
\]

By integration by parts, we have

\[
\Re \left(\langle A_1 U, U \rangle_{\mathcal{H}_1} \right) = \Re \left(\sum_{j=1}^{N} \left[\partial_x u_{2j-1}v_{2j-1} \right]_0^{l_{2j-1}} + \sum_{j=1}^{N} \left[-\partial_x^3 u_{2j}v_{2j} \right]_0^{l_{2j}} + \sum_{j=1}^{N} \left[\partial_x^2 u_{2j}\partial_x v_{2j} \right]_0^{l_{2j}} \right).
\]

Moreover, we have

\[
\sum_{j=1}^{N} \left[\partial_x^2 u_{2j}\partial_x v_{2j} \right]_0^{l_{2j}} = 0,
\]

by (2.7) and (2.8), and by the continuity of \(v \) at the interior nodes, we obtain

\[
\sum_{j=1}^{N} \left[\partial_x u_{2j-1}v_{2j-1} \right]_0^{l_{2j-1}} + \sum_{j=1}^{N} \left[-\partial_x^3 u_{2j}v_{2j} \right]_0^{l_{2j}}
= \sum_{j=1}^{N} \left(\partial_x u_{2j-1}(l_{2j-1}) + \partial_x^3 u_{2j}(0) \right) v_{2j-1}(l_{2j-1}) - \sum_{j=1}^{N-1} \left(\partial_x u_{2j+1}(0) + \partial_x^3 u_{2j}(l_{2j}) \right) v_{2j}(l_{2j})
- \partial_x u_1(0)v_1(0) - \partial_x^3 u_{2N}(l_{2N})v_{2N}(l_{2N})
= -\sum_{j=1}^{N} |v_{2j-1}(l_{2j-1})|^2 - \sum_{j=1}^{N-1} |v_{2j}(l_{2j})|^2
\]

by (2.9), (2.10) and since \(v \in V \). Therefore

\[
\Re \left(\langle A_1 U, U \rangle_{\mathcal{H}_1} \right) = -\sum_{j=1}^{2N-1} |v_j(l_j)|^2 \leq 0.
\tag{2.13}
\]

This shows the dissipativeness of \(A_1 \).

Let us now prove that \(A_1 \) is maximal, i.e. that \(\lambda I - A_1 \) is surjective for some \(\lambda > 0 \).

Let \((f, g)^t \in \mathcal{H}_1 \). We look for \(U = (u, v)^t \in D(A_1) \) solution of

\[
(\lambda I - A_1) \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} f \\ g \end{pmatrix},
\tag{2.14}
\]

10
or equivalently
\[
\begin{cases}
\lambda u_j - v_j = f_j & \forall j \in \{1, \ldots, 2N\}, \\
\lambda v_{2j-1} - \partial_x^2 u_{2j-1} = g_{2j-1} & \forall j \in \{1, \ldots, N\}, \\
\lambda v_{2j} + \partial_x^4 u_{2j} = g_{2j} & \forall j \in \{1, \ldots, N\}.
\end{cases}
\] (2.15)

Suppose that we have found \(u \) with the appropriate regularity. Then for all \(j \in \{1, \ldots, 2N\} \), we have
\[
v_j := \lambda u_j - f_j \in V.
\] (2.16)

It remains to find \(u \). By (2.15) and (2.16), \(u_j \) must satisfy, for all \(j = 1, \ldots, N \),
\[
\lambda^2 u_{2j-1} - \partial_x^2 u_{2j-1} = g_{2j-1} + \lambda f_{2j-1},
\]
and
\[
\lambda^2 u_{2j} + \partial_x^4 u_{2j} = g_{2j} + \lambda f_{2j}.
\]

Multiplying these identities by a test function \(\phi \), integrating in space and using integration by parts, we obtain
\[
\sum_{j=1}^{N} \int_0^{l_{2j-1}} \left(\lambda^2 u_{2j-1} \phi_{2j-1} + \partial_x u_{2j-1} \partial_x \phi_{2j-1} \right) dx - \sum_{j=1}^{N} \left[\partial_x u_{2j-1} \phi_{2j-1} \right]_0^{l_{2j-1}} + \sum_{j=1}^{N} \int_0^{l_{2j}} \left(\lambda^2 u_{2j} \phi_{2j} + \partial_x^2 u_{2j} \partial_x^2 \phi_{2j} \right) dx + \sum_{j=1}^{N} \left(\left[\partial_x^2 u_{2j} \phi_{2j} \right]_0^{l_{2j}} - \left[\partial_x^2 u_{2j} \partial_x \phi_{2j} \right]_0^{l_{2j}} \right)
\]
\[
= \sum_{j=1}^{2N} \int_0^{l_j} (g_j + \lambda f_j) \phi_j dx.
\]

Since \((u, v) \in D(A_1)\) and \((u, v)\) satisfies (2.16), we then have
\[
\sum_{j=1}^{N} \int_0^{l_{2j-1}} \left(\lambda^2 u_{2j-1} \phi_{2j-1} + \partial_x u_{2j-1} \partial_x \phi_{2j-1} \right) dx + \sum_{j=1}^{N} \int_0^{l_{2j}} \left(\lambda^2 u_{2j} \phi_{2j} + \partial_x^2 u_{2j} \partial_x^2 \phi_{2j} \right) dx
\]
\[
+ \sum_{j=1}^{2N-1} \lambda u_j (l_j) \phi_j (l_j) = \sum_{j=1}^{2N} \int_0^{l_j} (g_j + \lambda f_j) \phi_j dx + \sum_{j=1}^{2N-1} f_j (l_j) \phi_j (l_j). \quad (2.17)
\]

This problem has a unique solution \(u \in V \) by Lax-Milgram’s lemma, because the left-hand side of (2.17) is coercive on \(V \) equipped with the inner product defined by
\[
<u, \tilde{u} > = \sum_{j=1}^{N} \int_0^{l_{2j-1}} (\partial_x u_{2j-1} (x) \partial_x \tilde{u}_{2j-1} (x) + u_{2j-1} (x) \tilde{u}_{2j-1} (x)) dx
\]
\[
+ \sum_{j=1}^{N} \int_0^{l_{2j}} (\partial_x^2 u_{2j} (x) \partial_x^2 \tilde{u}_{2j} (x) + u_{2j} (x) \tilde{u}_{2j} (x)) dx,
\]
and since $\lambda > 0$. If we consider $\phi \in \prod_{j=1}^{2N} D(0, l_j) \subset V$, then u satisfies

$$\lambda^2 u_{2j-1} - \partial_x^2 u_{2j-1} = g_{2j-1} + \lambda f_{2j-1} \quad \text{in } D'(0, l_{2j-1}), \quad j = 1, \ldots, N,$$

$$\lambda^2 u_{2j} + \partial_x^2 u_{2j} = g_{2j} + \lambda f_{2j} \quad \text{in } D'(0, l_{2j}), \quad j = 1, \ldots, N.$$

This directly implies that $u \in \prod_{j=1}^{N} \left(H^2(0, l_{2j-1}) \times H^4(0, l_{2j}) \right)$ and then $u \in V \cap \prod_{j=1}^{N} \left(H^2(0, l_{2j-1}) \times H^4(0, l_{2j}) \right)$. Coming back to (2.17) and by integrating by parts, we find

$$\sum_{j=1}^{N} (\partial^3_x u_{2j}(l_{2j}) \partial_x \bar{\phi}_{2j}(l_{2j}) - \partial^2_x u_{2j}(0) \partial_x \bar{\phi}_{2j}(0))$$

$$+ \sum_{j=1}^{N} (\partial_x u_{2j-1}(l_{2j-1}) + \partial^3_x u_{2j}(0)) \bar{\phi}_{2j-1}(l_{2j-1})$$

$$- \sum_{j=1}^{N-1} (\partial_x u_{2j+1}(0) + \partial^3_x u_{2j}(l_{2j})) \bar{\phi}_{2j}(l_{2j}) + 2N \sum_{j=1}^{2N-1} \lambda u_j(l_j) \bar{\phi}_j(l_j) = \sum_{j=1}^{2N-1} f_j(l_j) \bar{\phi}_j(l_j).$$

Consequently, by taking particular test functions $\bar{\phi}$, we obtain

$$\partial^2_x u_{2j}(l_{2j}) = 0 \quad \text{and} \quad \partial^2_x u_{2j}(0) = 0, \quad j = 1, \ldots, N,$$

$$\partial_x u_{2j-1}(l_{2j-1}) + \partial^3_x u_{2j}(0) = -\lambda u_{2j-1}(l_{2j-1}) + f_{2j-1}(l_{2j-1})$$

$$= -v_{2j-1}(l_{2j-1}), \quad j = 1, \ldots, N,$$

$$\partial_x u_{2j+1}(0) + \partial^3_x u_{2j}(l_{2j}) = \lambda u_{2j}(l_{2j}) - f_{2j}(l_{2j}) = v_{2j}(l_{2j}), \quad j = 1, \ldots, N - 1.$$

It remains to show that $(u, \bar{y}) \in \mathcal{H}_1$. Since $(\tilde{f}, \tilde{g}) \in \mathcal{H}_1 = (I - P_{0,1})(V \times \prod_{j=1}^{2N} L^2(0, l_j))$, there exists $(\tilde{f}, \tilde{g}) \in V \times \prod_{j=1}^{2N} L^2(0, l_j)$ such that $(\tilde{f}, \tilde{g}) = (I - P_{0,1})(\tilde{f}, \tilde{g})$. Then

$$(u, \bar{y}) = (\lambda I - A_1)^{-1}(\tilde{f}, \tilde{g}) = (\lambda I - A_1)^{-1}(I - P_{0,1})(\tilde{f}, \tilde{g}) = (I - P_{0,1})(\lambda I - A_1)^{-1}(\tilde{f}, \tilde{g}) \in \mathcal{H}_1,$$

since the resolvent of A_1 commutes with $P_{0,1}$ (see [20]).

In summary we have found $(u, \bar{y}) \in D(A_1)$ satisfying (2.14), which finishes the proof of (i).

(ii) To prove (ii), it suffices to derivate the energy (1.1) for regular solutions and to use system (P_1). The calculations are analogous to those of the proof of the dissipativeness of A_1 in (i), and then, are left to the reader. \square

Proposition 2.2 allows to get an existence result in the whole space $V \times \prod_{j=1}^{2N} L^2(0, l_j)$:

Corollary 2.3. For an initial datum $U_0 \in V \times \prod_{j=1}^{2N} L^2(0, l_j)$, there exists a unique solution $U \in C([0, +\infty), V \times \prod_{j=1}^{2N} L^2(0, l_j))$ to problem (2.6).
Proof. Let U_0 be an initial datum in $V \times \prod_{j=1}^{2N} L^2(0, l_j)$. We can write $U_0 = P_{0,1}U_0 + (Id - P_{0,1})U_0$ where $(Id - P_{0,1})U_0 \in H_1$. Denote by $T(t)$ the semi-group generated by A_1 in H_1 (see Proposition 2.2). The solution of (2.6) is then given by $P_{0,1}U_0 + T(t)(Id - P_{0,1})U_0$. □

We see, in the same manner, that problem (P_2) can be rewritten in an abstract way as:

find $(u, v)^t \in D(A_2)$ such that $(u, v)^t = A_2(u, v)^t$, where $A_2 : Y_2 \to V \times \prod_{j=1}^{2N} L^2(0, l_j)$ for

\[
Y_2 := \left\{ (u, v) \in \prod_{j=1}^{N} (H^2(0, l_{2j-1}) \times H^4(0, l_{2j})) \cap V \times V \right. \\
\left. \text{satisfying (2.7), (2.9), (2.10) and (2.18) hereafter} \right\},
\]

\[
\partial_x^2 u_{2j}(0) = \partial_x v_{2j}(0), \ j = 1, ..., N \quad \text{and} \quad \partial_x^2 u_{2j}(l_{2j}) = -\partial_x v_{2j}(l_{2j}), \ j = 1, ..., N - 1, \ (2.18)
\]

Then we define the Hilbert space H_2 by

\[
V \times \prod_{j=1}^{2N} L^2(0, l_j) = E_0 \oplus H_2, \quad H_2 = (I - P_{0,2})(V \times \prod_{j=1}^{2N} L^2(0, l_j))
\]

with $P_{0,2} : V \times \prod_{j=1}^{2N} L^2(0, l_j) \to E_0$ the projection onto E_0 defined by

\[
P_{0,2} = \frac{1}{2\pi} \oint_\gamma (\lambda I - A_2)^{-1} d\lambda
\]

(with γ is a simple closed curve enclosing only the eigenvalue 0), and

\[
D(A_2) := H_2 \cap Y_2.
\]

Then

\[
A_2 : D(A_2) \to H_2.
\]

The following proposition holds:

Proposition 2.4. (i) For an initial datum $U_0 \in H_2$, there exists a unique solution

$U \in C([0, +\infty), H_2)$ to

\[
\begin{cases}
U' = A_2 U, \\
U(0) = (u^0, u^1) = U_0.
\end{cases}
\]
Moreover, if \(U_0 \in \mathcal{D}(A_2) \), then

\[
U \in C([0, +\infty), \mathcal{D}(A_2)) \cap C^1([0, +\infty), \mathcal{H}_2).
\]

(ii) The solution \(u \) of \((P_2)\) with initial datum in \(\mathcal{D}(A_2) \) satisfies (1.4). Therefore the energy is nonincreasing.

Proof. The proof of (i) and (ii) is the same as the proof of Proposition 2.2, and therefore is left to the reader. \(\square \)

In the same manner as previously, Proposition 2.4 allows to get an existence result in the whole space \(V \times \prod_{j=1}^{2N} L^2(0, l_j) \):

Corollary 2.5. For an initial datum \(U_0 \in V \times \prod_{j=1}^{2N} L^2(0, l_j) \), there exists a unique solution \(U \in C([0, +\infty), V \times \prod_{j=1}^{2N} L^2(0, l_j)) \) to

\[
\begin{cases}
U' = A_2 U, \\
U(0) = U_0.
\end{cases}
\]

3 Spectral analysis of a chain of serially connected Euler-Bernoulli beams and strings

In this section, we study the spectral analysis of the corresponding conservative system.

Let \(\Phi \) be the solution of the conservative system derived from problems \((P_1)\) and \((P_2)\) given in the introduction, i.e. \(\Phi \) is the solution of the following system

\[
\begin{align*}
(\partial_t^2 \Phi_{2j-1} - \partial_x^2 \Phi_{2j-1})(t, x) &= 0, \quad x \in (0, l_{2j-1}), \ t \in (0, \infty), \ j = 1, \ldots, N, \\
(\partial_t^2 \Phi_{2j} + \partial_x^4 \Phi_{2j})(t, x) &= 0, \quad x \in (0, l_{2j}), \ t \in (0, \infty), \ j = 1, \ldots, N, \\
\Phi_1(t, 0) &= 0, \quad \Phi_{2N}(t, l_{2N}) = 0, \ t \in (0, \infty), \\
\partial_x^2 \Phi_{2j}(t, 0) &= 0, \quad \partial_x^2 \Phi_{2j}(t, l_{2j}) = 0, \ t \in (0, \infty), \ j = 1, \ldots, N, \\
\Phi_j(t, l_j) &= \Phi_{j+1}(t, 0), \ t \in (0, \infty), \ j = 1, \ldots, 2N - 1, \\
\partial_t^2 \Phi_{2j}(t, 0) + \partial_x^2 \Phi_{2j-1}(t, l_{2j-1}) &= 0, \ t \in (0, \infty), \ j = 1, \ldots, N, \\
\partial_t^4 \Phi_{2j}(t, l_{2j}) + \partial_x^4 \Phi_{2j+1}(t, 0) &= 0, \ t \in (0, \infty), \ j = 1, \ldots, N, \\
\Phi_j(0, x) &= u_j^0(x), \quad \partial_t \Phi_j(0, x) = u_j^1(x), \ x \in (0, l_j), \ j = 1, \ldots, 2N,
\end{align*}
\]

where we have replaced the dissipative conditions (in bold characters in systems \((P_1)\) and \((P_2)\)) by the conservative ones.
3.1 The characteristic equation

Let ϕ be a non-trivial solution of the eigenvalue problem (EP) associated with the conservative problem (P_c) and $(-z^4)$ be the corresponding eigenvalue (since the eigenvalues of the eigenvalue problem associated with (P_c) are all negative). We will assume that $z > 0$. The case $z = 0$ has been treated before (cf. Problem (EP_0), Section 2). That is to say, ϕ satisfies the transmission and boundary conditions (3.19)-(3.23) hereafter as well as

\[
(EP) \begin{cases}
\partial_x^2 \phi_{2j-1} = -z^4 \phi_{2j-1} & \text{on } (0, l_{2j-1}), \ \forall j \in \{1, \ldots, N\}, \\
-\partial_x^4 \phi_{2j} = -z^4 \phi_{2j} & \text{on } (0, l_{2j}), \ \forall j \in \{1, \ldots, N\}, \\
\phi_{2j-1} \in H^2(0, l_{2j-1}), \ \forall j \in \{1, \ldots, N\}, \ \phi_{2j} \in H^4(0, l_{2j}), \ \forall j \in \{1, \ldots, N\}, \\
\phi_{1}(0) = 0, \ \phi_{2N}(l_{2N}) = 0, \ (3.19) \\
\partial_x^2 \phi_{2j}(0) = \partial_x^2 \phi_{2j}(l_{2j}) = 0, \ j = 1, \ldots, N \ (3.20) \\
\phi_{j}(l_{j}) = \phi_{j-1}(0), \ j = 1, \ldots, 2N - 1 \ (3.21) \\
\partial_x^3 \phi_{2j}(0) + \partial_x \phi_{2j-1}(l_{2j-1}) = 0, \ j = 1, \ldots, N \ (3.22) \\
\partial_x^3 \phi_{2j}(l_{2j}) + \partial_x \phi_{2j+1}(0) = 0, \ j = 1, \ldots, N - 1. \ (3.23)
\end{cases}
\]

Following Paulsen ([28]) and Mercier ([23]), we will rewrite this eigenvalue problem on a chain of $2N$ beams and strings using only square matrices of order 2 in the following way: we define, for each $j \in \{1, \ldots, N\}$, the vector functions V_{2j-1} and V_{2j} by

\[
V_{2j-1}(x) = \left(\phi_{2j-1}(x), \frac{1}{z^2} \partial_x \phi_{2j-1}(x) \right)^t, \ \forall x \in [0, l_{2j-1}], \\
V_{2j}(x) = \left(\phi_{2j}(x), \frac{1}{z^3} \partial_x^3 \phi_{2j}(x) \right)^t, \ \forall x \in [0, l_{2j}].
\]

Define the matrices A_j by

\[
A_{2j-1}(z, l_{2j-1}) := \begin{pmatrix} c_{2j-1} & s_{2j-1} \\ -s_{2j-1} & c_{2j-1} \end{pmatrix}, \\
A_{2j}(z, l_{2j}) := \frac{1}{e^{2l_{2j}z} - 2e^{l_{2j}z} s_{2j} - 1} \begin{pmatrix} e^{2l_{2j}z} (c_{2j} - s_{2j}) - c_{2j} - s_{2j} & 2s_{2j} \left(1 - e^{2l_{2j}z} \right) \\ e^{2l_{2j}z} c_{2j} - 2e^{l_{2j}z} + c_{2j} & e^{2l_{2j}z} (c_{2j} - s_{2j}) - c_{2j} - s_{2j} \end{pmatrix}.
\]

15
with \(j \in \{1, \cdots, N\} \) and with the notation
\[
\begin{align*}
\forall j \in \{1, \cdots, N\},
\begin{cases}
c_{2j-1} = \cos(l_{2j-1} \cdot z^2), & s_{2j-1} = \sin(l_{2j-1} \cdot z^2) \\
c_{2j} = \cos(l_{2j} \cdot z), & s_{2j} = \sin(l_{2j} \cdot z).
\end{cases}
\end{align*}
\] (3.24)

The matrix \(T \) is defined by:
\[
T(z) := \begin{pmatrix} 1 & 0 \\ 0 & -1/z \end{pmatrix}.
\]

To finish with, the matrix \(M(z) \) is the square matrix of order 2 given by
\[
M(z) = A_{2N}TA_{2N-1} \cdots T^{-1}A_2TA_1. \tag{3.25}
\]

Lemma 3.1. (A few trivial but useful properties)

With the notation introduced above, we have:
\[
\begin{align*}
V_j(l_j) = A_jV_j(0), & \quad \forall j \in \{1, \ldots, 2N\}, \\
V_{2j}(0) = TV_{2j-1}(l_{2j-1}), & \quad \forall j \in \{1, \ldots, N\}, \\
V_{2j+1}(0) = T^{-1}V_{2j}(l_{2j}), & \quad \forall j \in \{1, \ldots, N-1\}, \\
V_{2N}(l_{2N}) = M(z)V_1(0).
\end{align*}
\]

Proof. First, for \(j \) odd and \(j \in \{1, \ldots, 2N\} \), since \(\phi_j \) satisfies the first equation of the eigenvalue problem (EP), \(\phi_j \) is a linear combination of the vectors of the fundamental basis
\[
(\cos(z^2 \cdot), \sin(z^2 \cdot)).
\]

The first equation of the lemma follows from that property after some calculations.

Now, for \(j \) even and \(j \in \{1, \ldots, 2N\} \), since \(\phi_j \) satisfies the second equation of the eigenvalue problem (EP), \(\phi_j \) is a linear combination of the vectors of the fundamental basis
\[
(\cos(z \cdot), \sin(z \cdot), e^{z \cdot}, e^{-z \cdot}).
\]

In this basis, if we consider the two following functions \(d_1, d_2 \) with coordinates
\[
\begin{align*}
d_1 := (-e^{l_jz} \sin(l_jz), e^{l_jz} \cos(l_jz) - 1, 0, -e^{l_jz} \sin(l_jz)) \\
d_2 := (e^{l_jz} - e^{-l_jz}, 0, \cos(l_jz) - e^{-l_jz}, e^{l_jz} - \cos(l_jz)),
\end{align*}
\]
we can see that they are independent and satisfy (3.19). Consequently \(\phi_j \) can be expressed as a linear combination of these two functions. Now, to find \(A_j \), we proceed as

\[16\]
follows: let $(\alpha, \beta)^t$ the coordinates of ϕ_j in the basis (d_1, d_2). There exist two matrices M_0, M_1 such that $V_j(0) = M_0(\alpha, \beta)^t$ and $V_j(l_j) = M_1(\alpha, \beta)^t$, then A_j is the matrix $M_1M_0^{-1}$.

Moreover the transmission conditions (3.21), (3.22) and (3.23) imply the second and third equations. The fourth one is the logical consequence of the first three applied successively for $j = 1, j = 2$, etc...

Theorem 3.2. *(The characteristic equation for the eigenvalue problem corresponding to a chain of alternated beams and strings)*

The number $(-z^4)$ $(z > 0)$ is an eigenvalue of Problem (EP) if and only if z satisfies the characteristic equation

$$f(z) = m_{12}(z) = 0,$$ \hspace{1cm} (3.26)

where $m_{12}(z)$ is the term on the first line and second column of the matrix $M(z)$.

Proof. Let ϕ be a non-trivial solution of the eigenvalue problem (EP) and $(-z^4)$ be the corresponding eigenvalue, where $z > 0$.

Using the boundary conditions as well as $V_{2N}(l_{2N}) = M(z)V_1(0)$, it follows:

$$\begin{pmatrix} 0 \\ \frac{1}{z^3} \partial_x^3 \phi_{2N}(l_{2N}) \end{pmatrix} = M(z) \begin{pmatrix} 0 \\ \frac{1}{z^2} \partial_x \phi_1(0) \end{pmatrix}.$$

It is clear that the vector of the second part of the previous equality is non-trivial since ϕ is a non-trivial solution of problem (EP). Hence the result.

Proposition 3.3. *(Asymptotic behavior of the characteristic equation)*

Assume that the characteristic equation is given by Theorem 3.2. Then

$$f(z) = z (f_\infty(z) + g(z))$$

where

$$f_\infty(z) = s_1(z) \cdot c_2(z) \cdot s_3(z) \cdots s_{2N-1}(z) \cdot (c_{2N}(z) - s_{2N}(z))$$ \hspace{1cm} (3.27)

(with c_j, s_j defined by (3.24)) and g satisfies $\lim_{z \to +\infty} g(z) = 0$. Thus, the asymptotic behavior of the eigenvalues of Problem (EP) corresponds to the roots of the asymptotic characteristic equation

$$f_\infty(z) = 0.$$ \hspace{1cm} (3.28)
Proof. In the following, the notation \(o(h(z)) \) is used for a square matrix of order 2 such that all its terms are dominated by the function \(z \mapsto h(z) \) asymptotically if \(z \to +\infty \). For any \(j \in \{1, \ldots, N\} \),
\[
A_{2j}(z, l_{2j}) = \frac{1}{e^{2l_{2j}z} - 2e^{l_{2j}z}s_{2j} - 1} \left[e^{2l_{2j}z} \begin{pmatrix} c_{2j} - s_{2j} & 2s_{2j} \\ c_{2j} & c_{2j} - s_{2j} \end{pmatrix} + o(2l_{2j}z) \right].
\]
Thus
\[
A_{2j}(z, l_{2j}) = \begin{pmatrix} c_{2j} - s_{2j} & 2s_{2j} \\ c_{2j} & c_{2j} - s_{2j} \end{pmatrix} + o(1),
\]
which leads, after some calculations, to:
\[
T^{-1}A_{2j}TA_{2j-1} = \begin{pmatrix} (c_{2j} - s_{2j})c_{2j-1} & (c_{2j} - s_{2j})s_{2j-1} \\ -zc_{2j}c_{2j-1} & -zc_{2j}s_{2j-1} \end{pmatrix} + o(1).
\]
Likewise
\[
T^{-1}A_{2j+2}TA_{2j+1} = \begin{pmatrix} (c_{2j+2} - s_{2j+2})c_{2j+1} & (c_{2j+2} - s_{2j+2})s_{2j+1} \\ -zc_{2j+2}c_{2j+1} & -zc_{2j+2}s_{2j+1} \end{pmatrix} + o(1).
\]
Thus
\[
T^{-1}A_{2j+2}TA_{2j+1}T^{-1}A_{2j}TA_{2j-1} = \begin{pmatrix} -z(c_{2j+2} - s_{2j+2})s_{2j+1}c_{2j}c_{2j-1} & -z(c_{2j+2} - s_{2j+2})s_{2j+1}c_{2j}s_{2j-1} \\ z^2c_{2j+2}c_{2j}c_{2j-1} & z^2c_{2j+2}s_{2j+1}c_{2j}s_{2j-1} \end{pmatrix} + o(1).
\]
The result follows by induction. \(\square \)

Remark 3.4. We can note that the eigenvalues of \((EP)\) have \(2N\) families of asymptotic behavior:
\[
\left(-\left(\frac{k\pi}{l_{2j-1}} \right)^2 \right)_{k \in \mathbb{N}^*}, \quad j = 1, \ldots, N, \quad \left(-\left(\frac{\pi + 2k\pi}{2l_{2j}} \right)^4 \right)_{k \in \mathbb{N}^*}, \quad j = 1, \ldots, N-1,
\]
and
\[
\left(-\left(\frac{\pi/4 + k\pi}{l_{2N}} \right)^4 \right)_{k \in \mathbb{N}^*}.
\]
It follows that the generalized gap condition (1.3) holds (with \(\lambda = iz^2 \)).

Proposition 3.5. (Geometric multiplicity of the eigenvalues)
If \(-z^4\) (with \(z > 0\)) is an eigenvalue of Problem \((EP)\) and \(E_z\) is the associated eigenspace, then the dimension of \(E_z\) is one.
Proof. The eigenvectors ϕ of (EP) associated with the eigenvalue $(-z^4)$ (with $z > 0$) are entirely determined by their values at the nodes of the network (i.e. where the beams and strings are connected to one another). Due to Lemma 3.1, they are also determined by $V_1(0) = \left(\phi_1(0), \frac{1}{z^2} \partial_z \phi_1(0)\right)^T$. Now $\phi_1(0) = 0$ (cf. condition (3.19)) and $\partial_z \phi_1(0)$ may take any value in \mathbb{R}^*. Hence the result.

\[\square\]

3.2 Strong stability of (P_1) and (P_2)

We first prove the following lemma:

Lemma 3.6. If there exist $i, j \in \{1, \cdots, N\}$ such that
\[
\frac{l_{2i-1}}{l_{2j-1}} \notin \mathbb{Q} \quad \text{or} \quad \frac{l_{2i}}{l_{2j}} \notin \mathbb{Q},
\]

(3.29)
or if there exist $i, j \in \{1, \cdots, N\}$ such that
\[
\frac{(l_{2i})^2}{l_{2j-1}} \neq \frac{p^2}{q} \pi, \quad \text{where} \quad p, q \in \mathbb{Z},
\]

(3.30)
then
\[
\sum_{j=1}^{2N-1} |\phi_j(l_j)|^2 \neq 0,
\]

(3.31)
for all eigenvectors ϕ of (EP).

Proof. Let ϕ be an eigenvector of (EP) associated with the eigenvalue $(-z^4)$, where $z > 0$. Assume that (3.31) is false, i.e. that we have
\[
\sum_{j=2}^{2N} |\phi_j(0)|^2 = 0.
\]

(3.32)
We use in the following the basis introduced in the proof of Lemma 3.1.

First, since $\phi_{2j-1}(0) = 0$ for $j = 1, \cdots, N$, it is easy to see that there exists a_{2j-1} such that
\[
\phi_{2j-1} = a_{2j-1} \sin(z^2), \quad \forall j = 1, \cdots, N.
\]

Then, by the continuity at the interior nodes (3.21), we get
\[
a_{2j-1} \sin(z^2 l_{2j-1}) = 0, \quad \forall j = 1, \cdots, N.
\]
Second, there exist a_{2j}, b_{2j}, \tilde{a}_{2j} and \tilde{b}_{2j} such that
\[\phi_{2j} = a_{2j} \sin(z) + b_{2j} \cos(z) + \tilde{a}_{2j} \sinh(z) + \tilde{b}_{2j} \cosh(z). \]

By (3.20) and (3.32), we obtain
\[b_{2j} = \tilde{b}_{2j} = \tilde{a}_{2j} = 0 \quad \text{and} \quad a_{2j} \sin(z_{2j}) = 0, \quad \forall j = 1, \cdots, N, \]

since $z \neq 0$. Then, we have, with the notation introduced in (3.24),
\[a_{j} s_{j} = 0, \quad j = 1, \cdots, 2N. \tag{3.33} \]

Moreover (3.22) gives
\[a_{2j} = \frac{1}{z} a_{2j-1} c_{2j-1}, \]
and (3.23) yields
\[a_{2j+1} = z a_{2j} c_{2j}. \]

By induction, we obtain, for all $j \geq 2$,
\[a_{j} = z^{\epsilon_{2j}} a_{1} c_{j-1} c_{j-2} \cdots c_{1}, \tag{3.34} \]
with $\epsilon_{2j} = -1$ and $\epsilon_{2j-1} = 0$. Therefore $a_{1} \neq 0$ (otherwise $a_{j} = 0$ for all j, and then $\phi = 0$, which is impossible). Now, by (3.33), we have $s_{1} = 0$ and $c_{1} = \pm 1$. Then, since (3.34) holds, $a_{2} \neq 0$ and $s_{2} = 0$, again with (3.33). Then $c_{2} = \pm 1$... We see, by induction, that $s_{j} = 0$ for all $j \in \{1, \cdots, 2N\}$. Therefore, it suffices to have one $s_{j} \neq 0$ for some $j \in \{1, \cdots, 2N\}$ to obtain (3.31). It is the case if there exist $i, j \in \{1, \cdots, N\}$ such that (3.29) or (3.30) hold.

As a consequence of the previous lemma, we can prove the following proposition.

Proposition 3.7. We have
\[\lim_{t \to +\infty} E(t) = 0 \tag{3.35} \]
for all solution u of (P_{1}) with (u^{0}, u^{1}) in H_{1} if and only if (3.31) holds for all eigenvectors ϕ of (EP). Consequently, if there exist $i, j \in \{1, \cdots, N\}$ such that (3.29) or (3.30) hold, then (3.35) holds.
Proof. Let us show that (3.31) implies (3.35). For that purpose we closely follow [30].

First, we show that \(A_1\) has no eigenvalue on the imaginary axis. If it is not the case, let \(i\omega\) be an eigenvalue of \(A_1\) where \(\omega \in \mathbb{R}\). Let \(Z \in D(A_1)\) be an eigenvector associated with \(i\omega\). Then \(Z\) is of the form

\[
Z = \begin{pmatrix} \phi \\ i\omega \phi \end{pmatrix},
\]

with

\[
\partial_x^2 \phi_{2j-1} = -\omega^2 \phi_{2j-1}, \quad j = 1, \ldots, N, \\
\partial_x^4 \phi_{2j} = \omega^2 \phi_{2j}, \quad j = 1, \ldots, N.
\]

(3.36)

It is an immediate consequence of the identity \((i\omega I - A_1)Z = 0\).

We now take the inner product \(\langle \cdot, \cdot \rangle_{H} \) between \(A_1Z\) and \(Z\). By (2.13), we have

\[
\Re \left(\langle A_1Z, Z \rangle_{H} \right) = -\omega^2 \sum_{j=1}^{2N-1} |\phi_j(l_j)|^2.
\]

Since \(Z\) is an eigenvector of \(A_1\) associated with \(i\omega\) and \(\omega \neq 0\), we obtain

\[
\sum_{j=1}^{2N-1} |\phi_j(l_j)|^2 = 0.
\]

Note that \(\phi\) satisfies the eigenvalue problem \((EP)\). Then this contradicts (3.31). Therefore \(A_1\) has no eigenvalue on the imaginary axis.

Now, we can apply the main theorem of Arendt and Batty [12]: Since \(\sigma(A_1) \cap i\mathbb{R}\) is empty, we obtain (3.35).

⇒ Let us show that (3.35) implies (3.31). For that purpose we use a contradiction argument. Suppose that there exists an eigenvector \(\phi\) of \((EP)\) of associated eigenvalue \((-z^4)\) with \(z > 0\) such that

\[
\sum_{j=1}^{2N-1} |\phi_j(l_j)|^2 = 0.
\]

Let us set

\[
u(\cdot, t) = \phi \cos(z^2 t).
\]

Then \(u\) is solution of \((P_1)\) and satisfies

\[
E(t) = E(0),
\]

21
because

\[\phi_j(l_j) = 0, \quad \forall j = 1, \ldots, 2N. \]

This contradicts (3.35).

It suffices to use Lemma 3.6 to finish the proof. \qed

Moreover, with the same method as previously, we are able to prove the decay to zero of the energy of the solutions without restriction about the irrational properties of the lengths.

Proposition 3.8. We have

\[\lim_{t \to +\infty} E(t) = 0 \]

for any solution of \((P_2)\) with \((u^0, u^1)\) in \(H_2\).

Proof. As in the proof of Proposition 3.7, we can show that the energy of the solutions of \((P_2)\) tends to zero if and only if

\[
2N - 1 \sum_{j=1}^{2N-1} |\phi_j(l_j)|^2 + \sum_{j=1}^{N-1} \left(|\partial_x \phi_2(l_{2j})|^2 + |\partial_x \phi_2(0)|^2 \right) \neq 0, \quad \text{(3.37)}
\]

for all eigenvectors \(\phi \) of \((EP)\). Let \(\phi \) be an eigenvector of \((EP)\) such that (3.37) is false. By the same proof as Lemma 3.6, this implies that \(\phi = 0 \), which is impossible. Then (3.37) holds and therefore the energy decays to 0. \qed

Remark 3.9. If we take the initial data in \(V \times \prod_{j=1}^{2N} L^2(0, l_j) \), the energy of the solutions of \((P_1)\) and \((P_2)\) do not decay to 0. For instance, \(u = \phi \), where \((\phi, 0)^t\) is an eigenvector of \(A_i \) (\(i = 1, 2 \)) associated with the eigenvalue 0, is a solution of \((P_1)\) and \((P_2)\) with constant energy. More precisely, for an initial datum \(U_0 \in V \times \prod_{j=1}^{2N} L^2(0, l_j) \), the energy of the solution \(P_{0,1} U_0 + T(t)(Id - P_{0,1}) U_0 \) of \((P_1)\) (see Corollary 2.3) will converge to the energy of \(P_{0,1} U_0 \) (which is of course constant). We obtain a similar result for \((P_2)\).

4 Stabilization result for \((P_2)\)

We prove a decay result of the energy of system \((P_2)\), independently of the length of the strings and beams, for all regular initial data. In [10], the authors prove that the system described by \((P_2)\) is not exponentially stable in \(H_2\) with \(N = 1 \) (i.e. with one string and one beam). Therefore, in the general case (for \(N \in \mathbb{N}^* \)), we can not expect
to obtain an exponential decay of the energy of the solutions of \((P_2)\), but only a weaker decay rate, and in this general case, we prove a polynomial decay rate. To obtain this, our technique is based on a frequency domain method and combines a contradiction argument with the multiplier technique to carry out a special analysis for the resolvent.

The following theorem is a direct generalization of the result in [10], which we note, due to a mistake in the choice of \(\theta\), the decay rate in the following \(\frac{1}{t^2}\) has been written \(\frac{1}{t}\) (corresponding to a choice of \(\theta = 1\) and not to \(\theta = 1/2\)).

Theorem 4.1. There exists a constant \(C > 0\) such that, for all \((u^0, u^1) \in D(A_2)\), the solution of system \((P_2)\) satisfies the following estimate

\[
E(t) \leq C \frac{1}{t^2} \|(u^0, u^1)\|_{D(A_2)}^2, \quad \forall \ t > 0.
\]

(4.38)

Proof. We will employ the following frequency domain theorem for polynomial stability from [16] (see also [14, 22] for weaker variants) of a \(C_0\) semigroup of contractions on a Hilbert space:

Lemma 4.2. A \(C_0\) semigroup \(e^{tL}\) of contractions on a Hilbert space satisfies

\[
\|e^{tL}U_0\| \leq C \frac{1}{t^{\theta}}\|U_0\|_{D(L)}
\]

for some constant \(C > 0\) and for \(\theta > 0\) if and only if

\[
\rho(L) \supset \{i\beta \mid \beta \in \mathbb{R}\} \equiv i\mathbb{R},
\]

(4.39)

and

\[
\lim \sup_{|\beta| \to \infty} \frac{1}{|\beta|^\theta} \|(i\beta - L)^{-1}\| < \infty,
\]

(4.40)

where \(\rho(L)\) denotes the resolvent set of the operator \(L\).

Then the proof of Theorem 4.1 is based on the following two lemmas.

Lemma 4.3. The spectrum of \(A_2\) contains no point on the imaginary axis.

Proof. Since \(A_2\) has compact resolvent, its spectrum \(\sigma(A_2)\) only consists of eigenvalues of \(A_2\). We will show that the equation

\[
A_2Z = i\beta Z
\]

(4.41)
with \(Z = (y, v)^t \in \mathcal{D}(A_2) \) and \(\beta \neq 0 \) has only the trivial solution.

By taking the inner product of (4.41) with \(Z \) and using

\[
\Re(<A_2Z, Z>_{\mathcal{H}_2}) = -\sum_{j=1}^{N} \left(|v_{2j}(0)|^2 + \left| \frac{dv_{2j}}{dx}(0) \right|^2 \right) - \sum_{j=1}^{N-1} \left(|v_{2j}(l_{2j})|^2 + \left| \frac{dv_{2j}}{dx}(l_{2j}) \right|^2 \right),
\]

we obtain that

\[
v_{2j}(0) = 0, \quad \frac{dv_{2j}}{dx}(0) = 0, \quad j = 1, ..., N \text{ and } v_{2j}(l_{2j}) = 0, \quad \frac{dv_{2j}}{dx}(l_{2j}) = 0, \quad j = 1, ..., N - 1.
\]

Next, we eliminate \(v \) in (4.41) to get an ordinary differential equation:

\[
\begin{cases}
(\beta^2 y_{2j-1} + \partial^2_x y_{2j-1})(x) = 0, & x \in (0, l_{2j-1}), \quad j = 1, ..., N, \\
(\beta^2 y_{2j} - \partial^2_x y_{2j})(x) = 0, & x \in (0, l_{2j}), \quad j = 1, ..., N, \\
y_1(0) = 0, \quad y_{2N}(l_{2N}) = 0, \quad \partial^2_x y_{2N}(l_{2N}) = 0, \\
\partial^2_x y_{2j}(0) = 0, & j = 1, ..., N, \\
\partial^2_x y_{2j}(l_{2j}) = 0, & j = 1, ..., N - 1, \\
y_j(l_j) = y_{j+1}(0), & j = 1, ..., 2N - 1, \\
\partial^2_x y_{2j}(0) + \partial_x y_{2j-1}(l_{2j-1}) = 0, & j = 1, ..., N, \\
\partial^2_x y_{2j}(l_{2j}) + \partial_x y_{2j+1}(0) = 0, & j = 1, ..., N - 1.
\end{cases}
\]

Then, we can easily see that the only solution of the above system is the trivial one. \(\square \)

The second lemma shows that (4.40) holds with \(\mathcal{L} = A_2 \) and \(\theta = 1 \).

Lemma 4.4. The resolvent operator of \(A_2 \) satisfies condition (4.40) for \(\theta = 1 \).

Proof. Suppose that condition (4.40) is false with \(\theta = 1 \). By the Banach-Steinhaus Theorem (see [15]), there exists a sequence of real numbers \(\beta_n \to +\infty \) and a sequence of vectors \(Z_n = (y_n, v_n)^t \in \mathcal{D}(A_2) \) with \(\|Z_n\|_{\mathcal{H}_2} = 1 \) such that

\[
\|\beta_n(i\beta_n I - A_2)Z_n\|_{\mathcal{H}_2} \to 0 \quad \text{as} \quad n \to \infty,
\]

i.e.,

\[
\beta_n^{1/2}(i\beta_n y_n - v_n) \equiv f_n \to 0 \quad \text{in} \quad V,
\]

\[
\beta_n^{1/2}(i\beta_n v_{n,2j-1} - \frac{d^2 y_{n,2j-1}}{dx^2}) \equiv g_{n,2j-1} \to 0 \quad \text{in} \quad L^2(0, l_{2j-1}),
\]

24
\[
\beta_n^{1/2} \left(i \beta_n v_{n,2j} + \frac{d^4 y_{n,2j}}{dx^4} \right) \equiv k_{n,2j} \rightarrow 0 \text{ in } L^2(0,l_2), \quad (4.47)
\]
since \(\beta_n^{1/2} \leq \beta_n \).

Our goal is to derive from (4.44) that \(||Z_n||_{H_2} \) converges to zero, thus there is a contradiction. The proof is divided into four steps:

First step. We first notice that we have
\[
||\beta_n (i \beta_n I - A_2) Z_n||_{H_2} \geq |\Re (\langle \beta_n (i \beta_n I - A_2) Z_n, Z_n \rangle_{H_2})|. \quad (4.48)
\]
Then, by (4.42) and (4.44),
\[
\beta_n^{1/2} v_{n,2j}(0) \rightarrow 0, \quad \beta_n^{1/2} \frac{dv_{n,2j}}{dx}(0) \rightarrow 0, \quad j = 1, \ldots, N \quad (4.49)
\]
and
\[
\beta_n^{1/2} v_{n,2j}(l_{2j}) \rightarrow 0, \quad \beta_n^{1/2} \frac{dv_{n,2j}}{dx}(l_{2j}) \rightarrow 0, \quad j = 1, \ldots, N - 1. \quad (4.50)
\]
This further leads, by (4.45) and the trace theorem, to
\[
|\beta_n|^{3/2} |y_{n,2j}(0)| \rightarrow 0, \quad |\beta_n|^{3/2} \left| \frac{dy_{n,2j}}{dx}(0) \right| \rightarrow 0, \quad j = 1, \ldots, N, \quad (4.51)
\]
and
\[
|\beta_n|^{3/2} |y_{n,2j}(l_{2j})| \rightarrow 0, \quad |\beta_n|^{3/2} \left| \frac{dy_{n,2j}}{dx}(l_{2j}) \right| \rightarrow 0, \quad j = 1, \ldots, N - 1. \quad (4.52)
\]
Moreover, since \(Z_n \in D(A_2) \) and thus satisfies (2.18), we have, by (4.49) and (4.50),
\[
|\beta_n|^{1/2} \left| \frac{d^2 y_{n,2j}}{dx^2}(0) \right| \rightarrow 0, \quad j = 1, \ldots, N, \quad |\beta_n|^{1/2} \left| \frac{d^2 y_{n,2j}}{dx^2}(l_{2j}) \right| \rightarrow 0, \quad j = 1, \ldots, N - 1. \quad (4.53)
\]
Then, note that, by continuity at the interior nodes and by (4.51) and (4.52), we have
\[
|\beta_n|^{3/2} |y_{n,2j-1}(0)| \rightarrow 0, \quad j = 2, \ldots, N, \quad |\beta_n|^{3/2} |y_{n,2j-1}(l_{2j-1})| \rightarrow 0, \quad j = 1, \ldots, N. \quad (4.54)
\]

Second step. We now express \(v_n \) as a function of \(y_n \) from (4.45) and substitute it into (4.46)-(4.47) to get
\[
\beta_n^{1/2} \left(-\beta_n^2 y_{n,2j-1} - \frac{d^2 y_{n,2j-1}}{dx^2} \right) = g_{n,2j-1} + i \beta_n f_{n,2j-1}, \quad j = 1, \ldots, N, \quad (4.55)
\]
\[
\beta_n^{1/2} \left(-\beta_n^2 y_{n,2j} + \frac{d^4 y_{n,2j}}{dx^4} \right) = k_{n,2j} + i \beta_n f_{n,2j}, \quad j = 1, \ldots, N. \quad (4.56)
\]
Next, we take the inner product of (4.55) with $q_{2j-1}(\cdot) \frac{dy_{n,2j-1}}{dx}$ in $L^2(0, l_{2j-1})$ where $q_{2j-1} \in C^1([0, l_{2j-1}])$ and $q_{2j-1}(0) = 0$. We obtain that
\[
\int_0^{l_{2j-1}} \beta_n^{1/2} \left(-\beta_n^2 y_{n,2j-1} - \frac{d^2 y_{n,2j-1}}{dx^2} \right) q_{2j-1}(x) \frac{dy_{n,2j-1}}{dx} \, dx \\
= \int_0^{l_{2j-1}} \left(g_{n,2j-1} + i\beta_n f_{n,2j-1} \right) q_{2j-1}(x) \frac{dy_{n,2j-1}}{dx} \, dx \\
= \int_0^{l_{2j-1}} g_{n,2j-1} q_{2j-1}(x) \frac{dy_{n,2j-1}}{dx} \, dx - i \int_0^{l_{2j-1}} q_{2j-1} \frac{dy_{n,2j-1}}{dx} \, dx - i \int_0^{l_{2j-1}} f_{n,2j-1} \frac{dy_{n,2j-1}}{dx} \, dx \\
- i \int_0^{l_{2j-1}} f_{n,2j-1} \frac{dy_{n,2j-1}}{dx} \, dx \\
= i \int_0^{l_{2j-1}} f_{n,2j-1} \frac{dy_{n,2j-1}}{dx} \, dx + i f_{n,2j-1}(l_{2j-1}) q_{2j-1}(l_{2j-1}) \beta_n y_{n,2j-1}(l_{2j-1}).
\] (4.57)

It is clear that the right-hand side of (4.57) converges to zero. Indeed, $f_{n,2j-1}$ and $g_{n,2j-1}$ converge to zero in $H^1(0, l_{2j-1})$ and $L^2(0, l_{2j-1})$ respectively. $\|Z_n\|_{H^2} = 1$ and (4.54) holds, and, finally, $|\beta_n y_{n,2j-1}| = \left| \frac{f_{n,2j-1}}{\beta_n^{1/2}} + v_{n,2j-1} \right|$ is bounded in $L^2(0, l_{2j-1})$.

By a straightforward calculation,
\[
\Re \left\{ \int_0^{l_{2j-1}} -\beta_n^2 y_{n,2j-1} q_{2j-1} \frac{dy_{n,2j-1}}{dx} \, dx \right\} = -\frac{1}{2} q_{2j-1}(l_{2j-1}) |\beta_n y_{n,2j-1}(l_{2j-1})|^2 \\
+ \frac{1}{2} \int_0^{l_{2j-1}} \frac{dy_{n,2j-1}}{dx} |\beta_n y_{n,2j-1}|^2 \, dx
\]
and
\[
\Re \left\{ \int_0^{l_{2j-1}} -\frac{d^2 y_{n,2j-1}}{dx^2} q_{2j-1} \frac{dy_{n,2j-1}}{dx} \, dx \right\} = -\frac{1}{2} q_{2j-1}(l_{2j-1}) \left| \frac{dy_{n,2j-1}}{dx}(l_{2j-1}) \right|^2 \\
+ \frac{1}{2} \int_0^{l_{2j-1}} \left| \frac{dy_{n,2j-1}}{dx} \right|^2 \, dx.
\]

We then take the real part of (4.57), and (4.54) leads to
\[
\int_0^{l_{2j-1}} \frac{dq_{2j-1}}{dx} |\beta_n y_{n,2j-1}|^2 \, dx + \int_0^{l_{2j-1}} \frac{dq_{2j-1}}{dx} \left| \frac{dy_{n,2j-1}}{dx} \right|^2 \, dx \\
- q_{2j-1}(l_{2j-1}) \left| \frac{dy_{n,2j-1}}{dx}(l_{2j-1}) \right|^2 \to 0. \quad (4.58)
\]

Similarly, we take the inner product of (4.56) with $q_{2j}(\cdot) \frac{dy_{n,2j}}{dx}$ in $L^2(0, l_{2j})$ with $q_{2j} \in C^3([0, l_{2j}])$ and $q_{2j}(l_{2j}) = 0$. We then repeat the above procedure. Since
\[
\int_0^{l_{2j}} \left| \frac{dy_{2j}}{dx} \right|^2 \, dx = -\frac{1}{i\beta_n} \int_0^{l_{2j}} v_{n,2j} \frac{d^2 y_{n,2j}}{dx^2} \, dx - \frac{1}{i\beta_n} \int_0^{l_{2j}} (i\beta_n y_{n,2j} - v_{n,2j}) \frac{dq_{2j}}{dx} \, dx \\
- \frac{dq_{2j}}{dx}(0) y_{n,2j}(0) + \frac{dq_{2j}}{dx}(l_{2j}) y_{n,2j}(l_{2j}),
\]
then, from the boundedness of \(v_{n,2j}, \ i\beta_n v_{n,2j} - v_{n,2j}\), \(\frac{d^2 y_{n,2j}}{dx^2}\) in \(L^2(0,l_2)\) and (4.51)-(4.52), \(\frac{dy_{n,2j}}{dx}\) converges to zero in \(L^2(0,l_2)\). This will give, after some calculations,

\[
\int_0^{l_2} \frac{dq_{2j}}{dx} \mid \beta y_{n,2j} \mid^2 dx + \int_0^{l_2} 3 \frac{dq_{2j}}{dx} \mid \frac{d^2 y_{n,2j}}{dx^2} \mid^2 dx \\
- 2R \left(\frac{d^3 y_{n,2j}}{dx^3} (0) q_{2j} (0) \frac{dy_{n,2j}}{dx} (0) \right) \to 0. \quad (4.59)
\]

Third step. Next, we show that \(\frac{dy_{n,2j-1}}{dx}(l_{2j-1})\) and \(\frac{d^3 y_{n,2j}}{dx^3}(0)\) converge to zero. We take the inner product of (4.56) with \(\frac{1}{\beta_n} e^{-\beta_n^2 x}\) in \(L^2(0,l_2)\). We have, with (4.56),

\[
\int_0^{l_2} \left(-\beta_n^2 y_{n,2j} + \frac{d^4 u_{n,2j}^2}{dx^4} \right) e^{-\beta_n^2 x} dx = \int_0^{l_2} \frac{1}{\beta_n^{1/2}} k_{n,2j} e^{-\beta_n^2 x} dx \\
+ i \int_0^{l_2} \beta_n^{1/2} f_{n,2j} e^{-\beta_n^2 x} dx. \quad (4.60)
\]

It is clear that the first term of the right hand side of (4.60) tends to zero by (4.47). Moreover, by integration by parts,

\[
\int_0^{l_2} \beta_n^{1/2} f_{n,2j} e^{-\beta_n^2 x} dx = \int_0^{l_2} \frac{df_{n,2j}}{dx} e^{-\beta_n^2 x} dx - f_{n,2j}(l_2) e^{-\beta_n^2 l_2} + f_{n,2j}(0),
\]

which tends to zero since \(f_{n,2j}\) tends to zero in \(H^2\) and by the trace theorem.

This leads to

\[
\int_0^{l_2} \left(\beta_n e^{-\beta_n^2 x} y_{n,2j} - \frac{d^4 y_{n,2j}}{dx^4} \right) dx
= 0. \quad (4.61)
\]

Performing four integrations by parts in the second term on the left-hand side of (4.61), we obtain

\[
\int_0^{l_2} \left(\beta_n e^{-\beta_n^2 x} y_{n,2j} - \frac{d^4 y_{n,2j}}{dx^4} \right) dx
= \frac{d^3 y_{n,2j}}{dx^3} (0) + \beta_n^{1/2} \frac{d^2 y_{n,2j}}{dx^2} (0) \\
+ \beta_n \frac{dy_{n,2j}}{dx} (0) + \beta_n^2 y_{n,2j} (0) + o(1), \quad (4.62)
\]

with (4.52)-(4.53) and since

\[
\left| \frac{d^3 y_{n,2j}}{dx^3} (l_2) e^{-\beta_n^2 l_2} \right| ^2
\leq e^{-2\beta_n^2 l_2} \int_0^{l_2} \left| \frac{d^4 y_{n,2j}}{dx^4} (x) \right| ^2 dx \\
\leq e^{-2\beta_n^2 l_2} \int_0^{l_2} \left| \frac{k_{n,2j}}{\beta_n^{1/2}} - i\beta_n v_{n,2j} \right| ^2 dx \\
\leq \frac{2}{\beta_n} e^{-2\beta_n^2 l_2} \int_0^{l_2} \left| k_{n,2j} \right| ^2 dx \\
+ 2\beta_n^2 e^{-2\beta_n^2 l_2} \int_0^{l_2} \left| v_{n,2j} \right| ^2 dx \to 0,
\]

27
because $\|Z_n\|_{\mathcal{H}_2} = 1$.

Thus, according to (4.51) and (4.53), we simplify (4.62) to

$$
\frac{d^3 y_{n,2j}}{dx^3}(0) \to 0.
$$

(4.63)

Consequently, since $Z_n \in \mathcal{D}(\mathcal{A}_2)$ and thus satisfies (2.9), we obtain

$$
\frac{dy_{n,2j-1}}{dx} (l_{2j-1}) \to 0.
$$

(4.64)

Then, (4.51) and (4.63) lead to

$$
\frac{dy_{n,2j}}{dx}(0) \to 0.
$$

(4.65)

In view of (4.64)-(4.65), we simplify (4.58) and (4.59) to

$$
\left. \int_0^{l_{2j-1}} dq_{2j-1} \frac{dq_{2j-1}}{dx} |\beta_n y_{n,2j-1}|^2 dx + \int_0^{l_{2j-1}} dq_{2j-1} \left| \frac{dy_{n,2j-1}}{dx} \right|^2 dx \to 0, \right.
$$

(4.66)

$$
\left. \int_0^{l_{2j}} dq_{2j} \frac{dq_{2j}}{dx} |\beta_n y_{n,2j}|^2 dx + \int_0^{l_{2j}} 3 \frac{dq_{2j}}{dx} \left| \frac{d^2 y_{n,2j}}{dx^2} \right|^2 dx \to 0 \right.
$$

(4.67)

respectively.

Fourth step. Finally, we choose q_{2j-1} and q_{2j} such that $\frac{dq_{2j-1}}{dx}$ is strictly positive and $\frac{dq_{2j}}{dx}$ is strictly negative. This can be done by taking

$$
q_{2j-1}(x) = e^x - 1, \quad q_{2j}(x) = e^{(l_{2j}-x)} - 1.
$$

Therefore, (4.66) and (4.67) imply

$$
\|\beta_n y_{n,2j-1}\|_{L^2(0,l_{2j-1})} \to 0, \quad \|\beta_n y_{n,2j}\|_{L^2(0,l_{2j})} \to 0, \quad \|(y_{n,2j-1}, y_{n,2j})_j\|_{V} \to 0.
$$

(4.68)

In view of (4.45), we also get

$$
\|v_{n,2j-1}\|_{L^2(0,l_{2j-1})} \to 0, \quad \|v_{n,2j}\|_{L^2(0,l_{2j})} \to 0,
$$

(4.69)

which clearly contradicts $\|Z_n\|_{\mathcal{H}_2} = 1$.

Note that if we take $\theta = 1/2$, then we only have $|\beta_n|^{1/4} \left| \frac{d^3 y_{n,2j}}{dx^3}(0) \right| \to 0$ and $|\beta_n|^{5/4} |y_{n,2j}(0)| \to 0$ instead of (4.53) and (4.51) (since we only have (4.49) and (4.50) with power $1/4$ instead of $1/2$), and consequently (4.62) does not necessarily imply (4.63) which we need to conclude.

The two hypotheses of Lemma 4.2 are proved by Lemma 4.3 and Lemma 4.4. Then (4.38) holds. The proof of Theorem 4.1 is then finished.
References

