Automates cellulaires probabilistes
et
mesures spécifiques sur des espaces symboliques

Irène Marcovici
LIAFA, Université Paris Diderot - Paris 7

Thèse effectuée sous la direction de Jean Mairesse

Vendredi 22 novembre 2013
Example of PCA

- with probability \(\frac{1}{2}\)
- with probability \(\frac{1}{2}\)
- (with probability 1)

or

or
Example of PCA

- With probability 1/2
- With probability 1/2

(with probability 1)

or

or
Example of PCA

- with probability 1/2
- with probability 1/2
- (with probability 1)

or

or

□ □ □ □ ■ □ □ □ □ ■ □ □ □ ■ □ □ □ ■ □ □ □
□ ■ □ ■ □ □ □ ■ ■ □ □ ■ ■ □ □ ■ □ □ □ □ ■

 Irène Marcovici

PCA and specific measures on symbolic spaces
Example of PCA
Example of PCA

\[\begin{array}{c}
\text{with probability } \frac{1}{2} \\
\text{with probability } \frac{1}{2}
\end{array}\]

\[\begin{array}{c}
\text{(with probability } 1) \\
\text{or } 0.5 \\
\text{or } 0.5
\end{array}\]
Example of PCA

PCA of set of cells $E = \mathbb{Z}$,
Example of PCA

PCA of set of cells $E = \mathbb{Z}$, alphabet $\mathcal{A} = \{\blacksquare, \square\}$.
Example of PCA

PCA of set of cells $E = \mathbb{Z}$, alphabet $A = \{\blacklozenge, \square\}$, neighbourhood $\mathcal{N} = \{0, 1\}$.
Example of PCA

PCA of set of cells $E = \mathbb{Z}$, alphabet $A = \{■, □\}$, neighbourhood $\mathcal{N} = \{0, 1\}$.

Local function:

$$f : \{■, □\}^2 \to \mathcal{M}(\{■, □\})$$

defined by:

$$f(□□) = \frac{1}{2} \delta □ + \frac{1}{2} \delta ■$$

$$f(□■) = f(■□) = f(■■) = \delta □$$

Ergodicity and perfect sampling
PCA having a specific behaviour
Measures on subshift of finite type
Example of PCA

PCA of set of cells $E = \mathbb{Z}$, alphabet $A = \{\bullet, \square\}$, neighbourhood $\mathcal{N} = \{0, 1\}$.

Local function:

$$f : \{\bullet, \square\}^2 \rightarrow \mathcal{M}(\{\bullet, \square\})$$

Global function:

$$F : \mathcal{M}(\{\bullet, \square\}^{\mathbb{Z}}) \rightarrow \mathcal{M}(\{\bullet, \square\}^{\mathbb{Z}})$$

$$\mu \mapsto \mu F$$
Definition of PCA

Let \mathcal{A} be a finite set called the alphabet.

A PCA F of set of cells $E = \mathbb{Z}^d$ is defined by

- a finite neighbourhood $\mathcal{N} \subset E$,
- a local function $f : \mathcal{A}^{\mathcal{N}} \rightarrow \mathcal{M}(\mathcal{A})$.

From the configuration $(x_k)_{k \in E} \in \mathcal{A}^E$, cell k is updated by the symbol y with probability:

$$f((x_k+v)_{v \in \mathcal{N}})(y),$$

simultaneously and independently of the other cells.
Motivations for the study of PCA.

\[\text{PCA} = \begin{cases}
\text{synchronous analogous of interacting particle systems}, \\
\text{natural extension of deterministic CA.}
\end{cases} \]
Motivations for the study of PCA.

PCA = \left\{ \begin{array}{l}
\text{synchronous analogous of interacting particle systems,} \\
\text{natural extension of deterministic CA.}
\end{array} \right.

- **Computer science:** what can we compute in the presence of random errors?
Motivations for the study of PCA.

\[\text{PCA} = \begin{cases}
\text{synchronous analogous of interacting particle systems,} \\
\text{natural extension of deterministic CA.}
\end{cases} \]

- **Computer science**: what can we compute in the presence of random errors?
- Modelling tool in **physics** and in the **life sciences**.
Motivations for the study of PCA.

\[\text{PCA} = \begin{cases}
\text{synchronous analogous of interacting particle systems,} \\
\text{natural extension of deterministic CA.}
\end{cases} \]

- **Computer science**: what can we compute in the presence of random errors?
- Modelling tool in **physics** and in the **life sciences**.
- Link with different problems in **probability, combinatorics, symbolic dynamics**.
Back to the example
Back to the example
Notion of ergodicity

The system **forgets** its initial configuration. We say it is **ergodic**.
The system **forgets** its initial configuration. We say it is **ergodic**.

Ergodicity

A PCA F on \mathcal{A}^E is **ergodic** if:

- it has a **unique invariant measure** $\pi \in \mathcal{M}(\mathcal{A}^E)$, such that $\pi F = \pi$,
- for any initial measure $\mu \in \mathcal{M}(\mathcal{A}^E)$, the sequence of iterates $(\mu F^n)_{n \geq 0}$ **converges** weakly to π.

Irène Marcovici
PCA and specific measures on symbolic spaces
Example of PCA

Here, we can describe explicitly the unique invariant measure π of the PCA.
Example of PCA

Here, we can describe explicitly the unique invariant measure π of the PCA. It is the Markov measure given by:

\[
\pi_{\square} = \frac{\varphi^2}{1 + \varphi^2} \quad \text{and} \quad \pi_{\blacksquare} = \frac{1}{1 + \varphi^2} \quad \left(\varphi = \frac{1 + \sqrt{5}}{2}\right).
\]
Example of PCA

Here, we can describe explicitly the unique invariant measure π of the PCA. It is the Markov measure given by:

\[
\begin{align*}
\pi_{\square} &= \frac{\sqrt{5} - 1}{\sqrt{5} + 1}, \\
\pi_{\blacksquare} &= \frac{1}{\sqrt{5} + 1}
\end{align*}
\]

with $\varphi = \frac{1 + \sqrt{5}}{2}$.

But for general PCA, the ergodicity is difficult to determine, and we have no expression of the invariant measure(s)!
1. The ergodicity of CA and hence of PCA is **undecidable**.
The ergodicity of CA and hence of PCA is undecidable. We propose an efficient perfect sampling procedure for the invariant measure of an ergodic PCA.
Plan

1. The ergodicity of CA and hence of PCA is undecidable. We propose an efficient perfect sampling procedure for the invariant measure of an ergodic PCA.

2. Inverse problems:
 - PCA having Bernoulli (or Markov) invariant measures,
 - PCA classifying the density.
Plan

1. The ergodicity of CA and hence of PCA is undecidable. We propose an efficient perfect sampling procedure for the invariant measure of an ergodic PCA.

2. Inverse problems:
 - PCA having Bernoulli (or Markov) invariant measures,
 - PCA classifying the density.

3. Measures of maximal entropy of subshift of finite type (SFT).
Plan

1. The ergodicity of CA and hence of PCA is undecidable. We propose an efficient perfect sampling procedure for the invariant measure of an ergodic PCA.

2. Inverse problems:
 - PCA having Bernoulli (or Markov) invariant measures,
 - PCA classifying the density.

3. Measures of maximal entropy of subshift of finite type (SFT). They are also invariant measures of a well-suited PCA.
Plan

1. Ergodicity and perfect sampling
 - Undecidability of the ergodicity
 - Perfect sampling

2. PCA having a specific behaviour
 - Bernoulli invariant measures
 - Density classification

3. Measures on subshift of finite type
 - One-dimensional SFT and the Parry measure
 - Link with PCA
Ergodicity of deterministic CA

A deterministic CA $F : \mathcal{A}^{\mathbb{Z}^d} \to \mathcal{A}^{\mathbb{Z}^d}$ is nilpotent if there exists $\alpha \in \mathcal{A}$ such that: $\forall x \in \mathcal{A}^{\mathbb{Z}^d}, \exists n \in \mathbb{N}, F^n(x) = \alpha^{\mathbb{Z}^d}$.
Ergodicity of deterministic CA

A deterministic CA $F : \mathcal{A}^{\mathbb{Z}^d} \rightarrow \mathcal{A}^{\mathbb{Z}^d}$ is nilpotent if there exists $\alpha \in \mathcal{A}$ such that: $\forall x \in \mathcal{A}^{\mathbb{Z}^d}, \exists n \in \mathbb{N}, F^n(x) = \alpha^{\mathbb{Z}^d}$.

For deterministic CA, ergodicity \iff nilpotency.

Proof. \Leftarrow is easy; \Rightarrow in two steps:

1. the unique invariant measure has to be a measure concentrated on a monochromatic configuration $\alpha^{\mathbb{Z}^d}$,
2. the convergence properties then implies the nilpotency (using [Guillon & Richard 2008], and [Salo 2012] for $d \geq 2$).
A deterministic CA $F : \mathcal{A}^\mathbb{Z}^d \to \mathcal{A}^\mathbb{Z}^d$ is nilpotent if there exists $\alpha \in \mathcal{A}$ such that: $\forall x \in \mathcal{A}^\mathbb{Z}^d, \exists n \in \mathbb{N}, F^n(x) = \alpha^\mathbb{Z}^d$.

For deterministic CA, ergodicity \iff nilpotency.

Proof. \Leftarrow is easy; \Rightarrow in two steps:

1. the unique invariant measure has to be a measure concentrated on a monochromatic configuration $\alpha^\mathbb{Z}^d$,
2. the convergence properties then implies the nilpotency (using [Guillon & Richard 2008], and [Salo 2012] for $d \geq 2$).

Corollary (with [Kari 1992])

The ergodicity of one-dimensional deterministic CA (and hence of PCA) is undecidable.
Perfect sampling for PCA

Let F be an ergodic PCA of invariant measure π. In general, we have no explicit description of π.

Perfect sampling of π: probabilistic algorithm returning a sequence $a_1 \ldots a_n$ with *exactly* the probability it has to appear under the measure π.
Perfect sampling for PCA

Let F be an ergodic PCA of invariant measure π. In general, we have no explicit description of π.

Perfect sampling of π: probabilistic algorithm returning a sequence $a_1 \ldots a_n$ with *exactly* the probability it has to appear under the measure π.

Aim: simulating the behaviour of the PCA after an infinity of iterations with a (hopefully) finite-time algorithm.
Perfect sampling for PCA

Let F be an ergodic PCA of invariant measure π. In general, we have no explicit description of π.

Perfect sampling of π: probabilistic algorithm returning a sequence $a_1 \ldots a_n$ with *exactly* the probability it has to appear under the measure π.

Aim: simulating the behaviour of the PCA after an infinity of iterations with a (hopefully) finite-time algorithm.

Idea: adapt the coupling from the past algorithm [Propp-Wilson 1996], with the introduction of a bounding process called the envelope PCA.
Update function of a PCA

A way to run a PCA (on $\mathcal{A} = \{0, 1\}$) from configuration $x \in \mathcal{A}^\mathbb{Z}$:

- generate for each cell k independently and uniformly a random number r_k in $[0, 1]$,
- choose the new state of the cell k to be
 \begin{align*}
 0 & \text{ if } r_k < f((x_{k+v})_{v \in \mathbb{N}})(0), \text{ and } 1 \text{ otherwise.}
 \end{align*}
Update function of a PCA

A way to run a PCA (on $\mathcal{A} = \{0, 1\}$) from configuration $x \in \mathcal{A}^\mathbb{Z}$:

- generate for each cell k independently and uniformly a random number r_k in $[0, 1]$,
- choose the new state of the cell k to be 0 if $r_k < f((x_{k+v})_{v \in \mathcal{N}})(0)$, and 1 otherwise.
Update function of a PCA

A way to run a PCA (on $A = \{0, 1\}$) from configuration $x \in A^\mathbb{Z}$:

- generate for each cell k independently and uniformly a random number r_k in $[0, 1]$,
- choose the new state of the cell k to be
 - 0 if $r_k < f((x_{k+v})_{v \in \mathbb{N}})(0)$, and
 - 1 otherwise.

It defines an update function for F, given by:

$$\phi : A^\mathbb{Z} \times [0, 1]^\mathbb{Z} \to A^\mathbb{Z}$$

$$\phi(x, r)_k = \begin{cases} 0 & \text{if } r_k < f((x_i)_{i \in k+\mathbb{N}})(0) \\ 1 & \text{otherwise.} \end{cases}$$
Update function of a PCA

Example: $\mathcal{A} = \{0, 1\}$, neighbourhood $\mathcal{N} = \{0, 1\}$
Example: $\mathcal{A} = \{0, 1\}$, neighbourhood $\mathcal{N} = \{0, 1\}$
Update function of a PCA

Example: $\mathcal{A} = \{0, 1\}$, neighbourhood $\mathcal{N} = \{0, 1\}$
Update function of a PCA

Example: $\mathcal{A} = \{0, 1\}$, neighbourhood $\mathcal{N} = \{0, 1\}$
Envelope PCA

Introduction of an envelope PCA defined on the alphabet

\[\mathcal{B} = \{0 = \{0\}, 1 = \{1\}, ? = \{0, 1\}\}, \]

to handle configurations partially known.

The update function \(\tilde{\phi} \) of \(\text{env}(P) \) satisfies for \(x \in \mathcal{A}^E \) and \(y \in \mathcal{B}^E \),

\[x \in y \implies \forall r \in [0, 1]^E, \phi(x, r) \in \tilde{\phi}(y, r). \]
Coupling from the past algorithm

Let F be an ergodic PCA on $E = \mathbb{Z}$, $\mathcal{A} = \{0, 1\}$, with $\mathcal{N} = \{0, 1\}$.
Let F be an ergodic PCA on $E = \mathbb{Z}$, $\mathcal{A} = \{0, 1\}$, with $\mathcal{N} = \{0, 1\}$.
Let \(F \) be an ergodic PCA on \(E = \mathbb{Z} \), \(\mathcal{A} = \{0, 1\} \), with \(\mathcal{N} = \{0, 1\} \).
Coupling from the past algorithm

Let F be an ergodic PCA on $E = \mathbb{Z}$, $\mathcal{A} = \{0, 1\}$, with $\mathcal{N} = \{0, 1\}$.

$\frac{1}{2} < \frac{1}{2}$

$(r^{1}_i)_{0 \leq i \leq 2}$
Let F be an ergodic PCA on $E = \mathbb{Z}$, $A = \{0, 1\}$, with $\mathcal{N} = \{0, 1\}$.

\[(r_i^1)_{0 \leq i \leq 2}\]
Coupling from the past algorithm

Let F be an ergodic PCA on $E = \mathbb{Z}$, $A = \{0, 1\}$, with $\mathcal{N} = \{0, 1\}$.

\begin{align*}
? & 1 \\
? & ? & ? \\
? & ? & ? & ?
\end{align*}

$$(r^1_i)_{0 \leq i \leq 2}$$

$$(r^2_i)_{0 \leq i \leq 3}$$
Let F be an ergodic PCA on $E = \mathbb{Z}$, $\mathcal{A} = \{0, 1\}$, with $\mathcal{N} = \{0, 1\}$.

\[(r_i^1)_{0 \leq i \leq 2} \]
\[(r_i^2)_{0 \leq i \leq 3} \]
Coupling from the past algorithm

Let F be an ergodic PCA on $E = \mathbb{Z}$, $\mathcal{A} = \{0, 1\}$, with $\mathcal{N} = \{0, 1\}$.

$\begin{align*}
? & 1 \\
? & 0 \ 1 \\
? & ? \ ? \ ? \ ? \\
\end{align*}$

$(r_i^1)_{0 \leq i \leq 3}$

$(r_i^2)_{0 \leq i \leq 3}$
Coupling from the past algorithm

Let F be an ergodic PCA on $E = \mathbb{Z}$, $A = \{0, 1\}$, with $\mathcal{N} = \{0, 1\}$.

\[
\begin{align*}
? & \quad 1 \\
? & \quad 0 \quad 1 \\
? & \quad ? \quad ? \quad ? \\
? & \quad ? \quad ? \quad ? \quad ? \\
? & \quad ? \quad ? \quad ? \quad ? \quad ? \quad ? \quad ?
\end{align*}
\]

$(r^1_i)_{0 \leq i \leq 2}$

$(r^2_i)_{0 \leq i \leq 3}$

$(r^3_i)_{0 \leq i \leq 4}$
Let F be an ergodic PCA on $E = \mathbb{Z}$, $\mathcal{A} = \{0, 1\}$, with $\mathcal{N} = \{0, 1\}$.

\[
\begin{array}{c}
\text{? 1} \\
\text{? 0 1} \\
\text{1 ? ? 0} \\
\text{? ? ? ? ?}
\end{array}
\begin{array}{c}
(r^1_i)_{0 \leq i \leq 2} \\
(r^2_i)_{0 \leq i \leq 3} \\
(r^3_i)_{0 \leq i \leq 4}
\end{array}
\]
Coupling from the past algorithm

Let F be an ergodic PCA on $E = \mathbb{Z}$, $\mathcal{A} = \{0, 1\}$, with $\mathcal{N} = \{0, 1\}$.

\[
\begin{array}{c}
? & 1 \\
? & 0 & 1 \\
1 & ? & ? & 0 \\
\end{array}
\]

\[
\begin{align*}
(r_1^1)_{0 \leq i \leq 2} \\
(r_2^2)_{0 \leq i \leq 3} \\
(r_3^3)_{0 \leq i \leq 4}
\end{align*}
\]
Coupling from the past algorithm

Let F be an ergodic PCA on $E = \mathbb{Z}$, $A = \{0, 1\}$, with $\mathcal{N} = \{0, 1\}$.

$$
\begin{array}{c}
? ? 1 \\
? 0 \ 1 \\
1 ? ? \ 0 \\
\end{array}
\begin{array}{c}
(r_1^1)_{0 \leq i \leq 2} \\
(r_1^2)_{0 \leq i \leq 3} \\
(r_1^3)_{0 \leq i \leq 4} \\
\end{array}
$$
Let F be an ergodic PCA on $E = \mathbb{Z}$, $A = \{0, 1\}$, with $\mathcal{N} = \{0, 1\}$.

\[
\begin{align*}
? & \quad 1 \\
? & \quad 0 \quad 1 \\
1 & \quad ? \quad ? \quad 0 \\
? & \quad ? \quad ? \quad ? \\
? & \quad ? \\
\end{align*}
\]

$(r^1_i)_{0 \leq i \leq 2}$, $(r^2_i)_{0 \leq i \leq 3}$, $(r^3_i)_{0 \leq i \leq 4}$, $(r^4_i)_{0 \leq i \leq 5}$
Coupling from the past algorithm

Let F be an ergodic PCA on $E = \mathbb{Z}$, $A = \{0, 1\}$, with $\mathcal{N} = \{0, 1\}$.

\[
\begin{array}{cccccc}
? & 1 \\
? & 0 & 1 \\
1 & ? & ? & 0 \\
? & 0 & ? & 1 & ? \\
\end{array}
\]

$(r_i^1)_{0 \leq i \leq 2}$

$(r_i^2)_{0 \leq i \leq 3}$

$(r_i^3)_{0 \leq i \leq 4}$

$(r_i^4)_{0 \leq i \leq 5}$
Let F be an ergodic PCA on $E = \mathbb{Z}$, $\mathcal{A} = \{0, 1\}$, with $\mathcal{N} = \{0, 1\}$.

\[
\begin{align*}
? & \quad 1 \\
? & \quad 0 \quad 1 \\
1 & \quad 1 \quad ? \quad 0 \\
? & \quad 0 \quad ? \quad 1 \quad ? \\
? & \quad ? \quad ? \quad ? \quad ?
\end{align*}
\]

\[(r_i^1)_{0 \leq i \leq 2} \quad (r_i^2)_{0 \leq i \leq 3} \quad (r_i^3)_{0 \leq i \leq 4} \quad (r_i^4)_{0 \leq i \leq 5}\]
Coupling from the past algorithm

Let F be an ergodic PCA on $E = \mathbb{Z}$, $\mathcal{A} = \{0, 1\}$, with $\mathcal{N} = \{0, 1\}$.

\[
\begin{array}{cccccccc}
? & 0 & 1 \\
1 & 0 & 1 & (r^1_i)_{0 \leq i \leq 2} \\
1 & 1 & ? & 0 & (r^2_i)_{0 \leq i \leq 3} \\
? & 0 & ? & 1 & ? & (r^3_i)_{0 \leq i \leq 4} \\
? & ? & ? & ? & ? & (r^4_i)_{0 \leq i \leq 5}
\end{array}
\]
Let F be an ergodic PCA on $E = \mathbb{Z}$, $A = \{0, 1\}$, with $N = \{0, 1\}$.
Let F be an ergodic PCA on $E = \mathbb{Z}$, $\mathcal{A} = \{0, 1\}$, with $\mathcal{N} = \{0, 1\}$.

$\begin{array}{c}
0 & 1 \\
1 & 0 & 1 \\
1 & 1 & ? & 0 \\
? & 0 & ? & 1 & ? \\
Perfect sampling using EPCA

Proposition

The algorithm stops a.s. if and only if the EPCA is ergodic.

- If the set of cells is finite, it is the case for positive-rate PCA.
- For \mathbb{Z}^d, there exists $\alpha^* \in]0, 1[$ such that the EPCA is
 - ergodic if $\operatorname{env}(f)(?^N)(?) < \alpha^*$,
 - non-ergodic if $\min_{x \in B^N \setminus A^N} \operatorname{env}(f)(x)(?) > \alpha^*$.
The majority-flip PCA

\(\alpha = 0.5 \)

\(\alpha = 0.3 \)

Study of the majority-flip PCA

Irène Marcovici PCA and specific measures on symbolic spaces
Plan

1. Ergodicity and perfect sampling
 - Undecidability of the ergodicity
 - Perfect sampling

2. PCA having a specific behaviour
 - Bernoulli invariant measures
 - Density classification

3. Measures on subshift of finite type
 - One-dimensional SFT and the Parry measure
 - Link with PCA
Back to elementary PCA

\[E = \mathbb{Z}, \ A = \{0, 1\}, \ \text{neighbourhood of size 2.} \]

\[
\begin{array}{c c c c}
1 & \text{with probability} & \theta_{11} & 1 \\
0 & \text{with probability} & 1 - \theta_{11} & 0 \\
\uparrow & & \uparrow & \\
0 & 0 & 0 & 1 \\
\end{array}
\]

\[
\begin{array}{c c c c}
1 & \text{with probability} & \theta_{10} & 1 \\
0 & \text{with probability} & 1 - \theta_{10} & 0 \\
\uparrow & & \uparrow & \\
1 & 0 & 1 & 1 \\
\end{array}
\]

\[
\begin{array}{c c c c}
1 & \text{with probability} & \theta_{01} & 0 \\
0 & \text{with probability} & 1 - \theta_{01} & 1 \\
\uparrow & & \uparrow & \\
0 & 1 & 0 & 1 \\
\end{array}
\]

\[
\begin{array}{c c c c}
1 & \text{with probability} & \theta_{11} & 1 \\
0 & \text{with probability} & 1 - \theta_{11} & 0 \\
\uparrow & & \uparrow & \\
1 & 1 & 1 & 0 \\
\end{array}
\]
Bernoulli invariant measures

Proposition [Belyaev and al. 1969]

The Bernoulli measure $\mu_p = \mathcal{B}(p)^\otimes \mathbb{Z}$ is an invariant measure of the PCA iff its transitions probabilities satisfy (at least) one of the following equalities.

1. $(1 - p) \cdot \theta_{00} + p \cdot \theta_{01} = (1 - p) \cdot \theta_{10} + p \cdot \theta_{11} = p$

2. $(1 - p) \cdot \theta_{00} + p \cdot \theta_{10} = (1 - p) \cdot \theta_{01} + p \cdot \theta_{11} = p$
Bernoulli invariant measures

Proposition [Belyaev and al. 1969]

The Bernoulli measure $\mu_p = \mathcal{B}(p)^\otimes \mathbb{Z}$ is an invariant measure of the PCA iff its transitions probabilities satisfy (at least) one of the following equalities.

1. $(1 - p) \cdot \theta_{00} + p \cdot \theta_{01} = (1 - p) \cdot \theta_{10} + p \cdot \theta_{11} = p$
2. $(1 - p) \cdot \theta_{00} + p \cdot \theta_{10} = (1 - p) \cdot \theta_{01} + p \cdot \theta_{11} = p$

Each of these conditions implies surprising properties of the space-time diagrams.

When both conditions are satisfied,

- all the lines of the space-time diagram are i.i.d.

When both conditions are satisfied,
- all the lines of the space-time diagram are i.i.d.
- the PCA appears in three directions

When both conditions are satisfied,

- all the lines of the space-time diagram are i.i.d.
- the PCA appears in three directions
- three points are independent unless they form an equilateral triangle pointing up.
Example 1

The choice $\theta_{01} = \theta_{10} = s$ and $\theta_{00} = \theta_{11} = 1 - s$ corresponds to

$$f(x, y) = s \cdot \delta_{x+y \mod 2} + (1 - s) \cdot \delta_{x+y+1 \mod 2}.$$

The measure $\mu_{1/2}$ is invariant.

(s=3/4)
Example 2

For every $p \in [0, 1/2]$, one can set

$$\theta_{01} = \theta_{10} = 0, \quad \theta_{11} = 1 \quad \text{and} \quad \theta_{00} = p/(1 - p).$$

This PCA forbids elementary triangles (pointing up) having a single 0.
Larger alphabet

Alphabet \(\mathcal{A} = \{0, \ldots, n\} \).
\(\theta^k_{ij} \) = probability to get \(k \) if the neighbourhood is in state \(ij \).

The Bernoulli measure \(\mu_p \) \((p = (p_0, \ldots, p_n)) \) is invariant if one of the following conditions is satisfied.

\[
\forall i \in \mathcal{A}, \forall k \in \mathcal{A}, \sum_{j \in \mathcal{A}} p_j \theta^k_{ij} = p_k
\]

\[
\forall j \in \mathcal{A}, \forall k \in \mathcal{A}, \sum_{i \in \mathcal{A}} p_i \theta^k_{ij} = p_k
\]

Same properties of space-time diagrams.
Larger alphabet

Alphabet $\mathcal{A} = \{0, \ldots, n\}$.

θ_{ij}^k = probability to get k if the neighbourhood is in state ij.

The Bernoulli measure μ_p ($p = (p_0, \ldots, p_n)$) is invariant if one of the following conditions is satisfied.

\[
\forall i \in \mathcal{A}, \forall k \in \mathcal{A}, \sum_{j \in \mathcal{A}} p_j \theta_{ij}^k = p_k
\]

\[
\forall j \in \mathcal{A}, \forall k \in \mathcal{A}, \sum_{i \in \mathcal{A}} p_i \theta_{ij}^k = p_k
\]

Same properties of space-time diagrams.

Remark: the deterministic CA that we recover are permutative CA.
The density classification problem

\[E = \mathbb{Z}^d, \quad A = \{0, 1\} \]

We still denote by \(\mu_p \) the Bernoulli measure of parameter \(p \).

Challenge

The density classification problem consists in finding a (P)CA or an IPS \(F \), such that:

\[
\begin{cases}
 p < 1/2 \Rightarrow \mu_p F^{t \to \infty} \to \delta_0, \\
 p > 1/2 \Rightarrow \mu_p F^{t \to \infty} \to \delta_1.
\end{cases}
\]
The density classification problem

\[E = \mathbb{Z}^d, \ A = \{0, 1\}. \]
We still denote by \(\mu_p \) the Bernoulli measure of parameter \(p \).

Challenge

The *density classification problem* consists in finding a (P)CA or an IPS \(F \), such that:

\[
\begin{align*}
 p < 1/2 & \implies \mu_p F^t \xrightarrow{w} \delta_0, \\
 p > 1/2 & \implies \mu_p F^t \xrightarrow{w} \delta_1.
\end{align*}
\]
Ergodicity and perfect sampling
PCA having a specific behaviour
Measures on subshift of finite type
Bernoulli invariant measures
Density classification

Irène Marcovici
Ergodicity and perfect sampling
PCA having a specific behaviour
Measures on subshift of finite type

Irène Marcovici
PCA and specific measures on symbolic spaces
Definition of Toom’s CA

Toom’s CA is the CA \mathcal{T} on \mathbb{Z}^2 of neighborhood $\mathcal{N} = \{ (0,0), (0,1), (1,0) \}$ (north-east-center) defined by the majority rule, that is,

$$(\mathcal{T}(x))_{i,j} = \text{maj}(x_{i,j}, x_{i,j+1}, x_{i+1,j}).$$

Toom’s rule classifies the density.
The proof in pictures
Ergodicity and perfect sampling
PCA having a specific behaviour
Measures on subshift of finite type
Bernoulli invariant measures
Density classification

The proof in pictures
Steps of the proof

Add NW-SE diagonals to the grid, and consider the triangular lattice obtained.
Steps of the proof

Add NW-SE diagonals to the grid, and consider the triangular lattice obtained.

- If \(p < 1/2 \), there exists a.s. no infinite 1-cluster (classical result of percolation theory)
Steps of the proof

Add NW-SE diagonals to the grid, and consider the triangular lattice obtained.

- If $p < 1/2$, there exists a.s. no infinite 1-cluster (classical result of percolation theory)
- Two different 1-clusters cannot merge
Steps of the proof

Add NW-SE diagonals to the grid, and consider the triangular lattice obtained.

- If $p < 1/2$, there exists a.s. no infinite 1-cluster (classical result of percolation theory)
- Two different 1-clusters cannot merge
- Any finite 1-cluster disappears in finite time and always stays in its enveloping rectangle
Steps of the proof

Add NW-SE diagonals to the grid, and consider the triangular lattice obtained.

- If \(p < 1/2 \), there exists a.s. no infinite 1-cluster (classical result of percolation theory)
- Two different 1-clusters cannot merge
- Any finite 1-cluster disappears in finite time and always stays in its enveloping rectangle
- A given point belongs a.s. to the enveloping rectangle of at most finite number of 1-clusters (by the exponential decay of the size of 1-clusters)
<table>
<thead>
<tr>
<th></th>
<th>$\mathbb{Z}/n\mathbb{Z}$</th>
<th>\mathbb{Z}</th>
<th>\mathbb{Z}^d, $d \geq 2$</th>
<th>T_n, $n \geq 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA</td>
<td>No perfect solution, good performances of GKL (huge literature)</td>
<td>Toom’s rule</td>
<td>No symmetric majority</td>
<td>Asymmetric majority</td>
</tr>
<tr>
<td>PCA</td>
<td>Arbitrary good precision with Majority-traffic No perfect solution</td>
<td>Toom’s rule</td>
<td></td>
<td>Asymmetric majority</td>
</tr>
<tr>
<td>IPS</td>
<td>No perfect solution</td>
<td>Modified Toom’s rule</td>
<td></td>
<td>Asymmetric majority</td>
</tr>
</tbody>
</table>
Summary

<table>
<thead>
<tr>
<th></th>
<th>$\mathbb{Z}/n\mathbb{Z}$</th>
<th>\mathbb{Z}</th>
<th>\mathbb{Z}^d, $d \geq 2$</th>
<th>T_n, $n \geq 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA</td>
<td>No perfect solution, good performances of GKL (huge literature)</td>
<td>GKL? Kari-traffic?</td>
<td>Toom’s rule No symmetric majority</td>
<td>Asymmetric majority</td>
</tr>
<tr>
<td>PCA</td>
<td>Arbitrary good precision with Majority-traffic No perfect solution</td>
<td>GKL? Kari-traffic? Maj-traffic?</td>
<td>Toom’s rule</td>
<td>Asymmetric majority</td>
</tr>
<tr>
<td>IPS</td>
<td>No perfect solution</td>
<td>Example conjectured by Cox&Durrett?</td>
<td>Modified Toom’s rule</td>
<td>Asymmetric majority</td>
</tr>
</tbody>
</table>
Summary

<table>
<thead>
<tr>
<th></th>
<th>$\mathbb{Z}/n\mathbb{Z}$</th>
<th>\mathbb{Z}</th>
<th>\mathbb{Z}^d, $d \geq 2$</th>
<th>T_n, $n \geq 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA</td>
<td>No perfect solution, good performances of GKL (huge literature)</td>
<td>GKL? Kari-traffic?</td>
<td>Toom’s rule No symmetric majority</td>
<td>Asymmetric majority</td>
</tr>
<tr>
<td>PCA</td>
<td>Arbitrary good precision with Majority-traffic No perfect solution</td>
<td>GKL? Kari-traffic? Maj-traffic?</td>
<td>Toom’s rule Symmetric rule?</td>
<td>Asymmetric majority Symmetric rule?</td>
</tr>
<tr>
<td>IPS</td>
<td>No perfect solution</td>
<td>Example conjectured by Cox&Durrett?</td>
<td>Modified Toom’s rule Symmetric rule?</td>
<td>Asymmetric majority Symmetric rule?</td>
</tr>
</tbody>
</table>
Summary

<table>
<thead>
<tr>
<th></th>
<th>$\mathbb{Z}/n\mathbb{Z}$</th>
<th>\mathbb{Z}</th>
<th>\mathbb{Z}^d, $d \geq 2$</th>
<th>Tree T_n, $n \geq 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA</td>
<td>No perfect solution, good performances of GKL (huge literature)</td>
<td>GKL? Kari-traffic?</td>
<td>Toom’s rule No symmetric majority</td>
<td>Asymmetric majority</td>
</tr>
<tr>
<td>PCA</td>
<td>Arbitrary good precision with Majority-traffic No perfect solution</td>
<td>GKL? Kari-traffic? Maj-traffic?</td>
<td>Toom’s rule Symmetric rule?</td>
<td>Asymmetric majority Symmetric rule?</td>
</tr>
<tr>
<td>IPS</td>
<td>No perfect solution</td>
<td>Example conjectured by Cox&Durrett?</td>
<td>Modified Toom’s rule Symmetric rule?</td>
<td>Asymmetric majority Symmetric rule?</td>
</tr>
</tbody>
</table>

Link with the positive rate problem.
Plan

1. Ergodicity and perfect sampling
 - Undecidability of the ergodicity
 - Perfect sampling

2. PCA having a specific behaviour
 - Bernoulli invariant measures
 - Density classification

3. Measures on subshift of finite type
 - One-dimensional SFT and the Parry measure
 - Link with PCA
Motivation: understanding the combinatorics of multi-dimensional SFT, being able to generate patterns “uniformly”.
Motivation: understanding the *combinatorics* of multi-dimensional SFT, being able to *generate patterns “uniformly”*.

Example: two-dimensional Fibonacci SFT
Set of configurations without two consecutive black squares, vertically or horizontally.
One-dimensional subshift of finite type

Let \mathcal{A} be an alphabet with n letters, and let $\mathcal{A} \in \mathcal{M}_n(\{0, 1\})$.

One-dimensional subshift of finite type

Let \mathcal{A} be an alphabet with n letters, and let $A \in \mathcal{M}_n(\{0, 1\})$.

Subshift of finite type

The *subshift of finite type* associated to A is the set Σ_A of words $w \in \mathcal{A}^\mathbb{Z}$ such that if $A_{i,j} = 0$, w does not contain the pattern ij.

$$A_{i,j} = \begin{cases} 1 & \text{if } ij \text{ is an allowed pattern}, \\ 0 & \text{if } ij \text{ is a forbidden pattern}. \end{cases}$$

$$\Sigma_A = \{ w \in \mathcal{A}^\mathbb{Z}; \forall k \in \mathbb{Z}, A_{w_k, w_{k+1}} = 1 \}. $$
The Parry measure

Let λ be the Perron value of the matrix A (assumed to be irreducible and aperiodic), and let r be the right-eigenvector associated to λ, satisfying $\sum_{i=1}^{n} r_i = 1$. The Parry measure is the Markov measure π of transition matrix P defined, for any $i, j \in \mathcal{A}$, by

$$P_{i,j} = A_{i,j} \frac{r_j}{\lambda r_i}.$$
The Parry measure

Let λ be the Perron value of the matrix A (assumed to be irreducible and aperiodic), and let r be the right-eigenvector associated to λ, satisfying $\sum_{i=1}^{n} r_i = 1$. The Parry measure is the Markov measure π of transition matrix P defined, for any $i, j \in \mathcal{A}$, by

$$P_{i,j} = A_{i,j} \frac{r_j}{\lambda r_i}.$$

The Parry measure is Markov-uniform: for a given $k \geq 1$, the value $\pi(awb)$ does not depend of the word $w \in \{1, \ldots, n\}^k$ such that awb is allowed.
Theorem

Let \mathcal{M}_{Σ_A} be the set of translation invariant measures on the SFT Σ_A, and let $\pi \in \mathcal{M}_{\Sigma_A}$. The following properties are equivalent.

(i) π is the Parry measure associated to Σ_A,
(ii) π is a Markov-uniform measure on Σ_A,
(iii) π is the measure of maximal entropy of Σ_A.

Example: Fibonacci SFT

Let $\mathcal{A} = \{0, 1\}$. The one-dimensional Fibonacci SFT is the set of words that do not contain two consecutive 1’s. It is given by:

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}.$$

Its Parry measure is the Markov measure given by

$$\pi_0 = \frac{\phi^2}{1 + \phi^2} \quad \text{and} \quad \pi_1 = \frac{1}{1 + \phi^2}.$$
First way to generate the Parry measure

The Parry measure of Fibonacci SFT can be generated by:

- choosing independently to write a 0 with probability \(r_0 = \frac{1}{\phi} \)
 and a 1 with probability \(r_1 = \frac{1}{\phi^2} \),
- rejecting the 1’s creating forbidden patterns.
First way to generate the Parry measure

The Parry measure of Fibonacci SFT can be generated by:

- choosing independently to write a 0 with probability \(r_0 = \frac{1}{\varphi} \)
 and a 1 with probability \(r_1 = \frac{1}{\varphi^2} \),
- rejecting the 1’s creating forbidden patterns.

Lemma [M. 2013]

For any SFT, the Parry measure can be generated by independent draws of letters, with reject of a letter if it creates a forbidden pattern.
Second way to generate the Parry measure

The Parry measure of Fibonacci SFT can be generated by:

- choosing independently to write a 0 with probability $\tilde{\tau}_0 = \frac{1}{\varphi^2}$
- and a 1 with probability $\tilde{\tau}_1 = \frac{1}{\varphi}$,
- deleting pairs of consecutive 1’s.
Second way to generate the Parry measure

The Parry measure of Fibonacci SFT can be generated by:
- choosing independently to write a 0 with probability $\tilde{r}_0 = \frac{1}{\varphi^2}$
 and a 1 with probability $\tilde{r}_1 = \frac{1}{\varphi}$,
- deleting pairs of consecutive 1’s.

Proposition [M. 2013]

For confluent SFT, the Parry measure can be generated by independent draws of letters and deletion of forbidden patterns.
Consider a configuration distributed according to the Parry measure π of the Fibonacci SFT.
Consider a configuration distributed according to the Parry measure π of the Fibonacci SFT.

For all $i \in \mathbb{Z}$, if $X_{2i} = X_{2i+2} = 0$, we flip the value of X_{2i+1} with probability $1/2$.

By the Markov-uniform property, the new sequence is still distributed according to π.
Link with PCA

Consider a configuration distributed according to the Parry measure π of the Fibonacci SFT.

For all $i \in \mathbb{Z}$, if $X_{2i} = X_{2i+2} = 0$, we flip the value of X_{2i+1} with probability $1/2$.

By the Markov-uniform property, the new sequence is still distributed according to π.

\[\begin{align*}
\pi &\quad X_{-2} \quad X_{-1} \quad X_0 \quad X_1 \quad X_2 \quad X_3 \quad X_4 \quad X_5 \quad X_6 \\
\pi_2 &\quad X_{-1} \quad X_1 \quad X_3 \quad X_5 \\
F_A &\quad \pi_2 \quad X_{-2} \quad X_0 \quad X_2 \quad X_4 \quad X_6 \\
\end{align*} \]
The projection π_2 of the Parry measure on odd (resp. even) sites is an invariant measure of the PCA.
Extension

The analogous result holds for any SFT in dimension 1 or in higher dimension.
Ergodicity and perfect sampling
PCA having a specific behaviour
Measures on subshift of finite type

One-dimensional SFT and the Parry measure
Link with PCA
Perspectives and works in progress

Perspectives and works in progress
Random walks on free products of groups (with J. Mairesse)

Study of the limit measure

\[\mathbb{Z}/2\mathbb{Z} \ast \mathbb{Z}/3\mathbb{Z} \]
Random walks on free products of groups (with J. Mairesse)

Generalisation of the Parry measure to SFT defined on infinite trees (with V. Delecroix)
Random walks on free products of groups \textit{(with J. Mairesse)}

Generalisation of the Parry measure to SFT defined on infinite trees \textit{(with V. Delecroix)}

Deterministic CA and Bernoulli invariant measures

Rigidity and randomisation \textit{(with B. Hellouin de Menibus, A. Maass, M. Sablik)}

\[f(x, y) = x + y \]
\[A = \mathbb{Z}/4\mathbb{Z} \]

\[f(x + y) = \tau_{23}(x + y) \]
- Random walks on free products of groups (with J. Mairesse)
- Generalisation of the Parry measure to SFT defined on infinite trees (with V. Delecroix)
- Deterministic CA and Bernoulli invariant measures
 Rigidity and randomisation (with B. Hellouin de Menibus, A. Maass, M. Sablik)
- Ergodicity of this PCA for large values of p. Work related to the study of a “percolation game” (with J. Martin)

\[
\begin{array}{c}
\begin{array}{c}
\text{with probability } p \\
\text{with probability } 1 - p
\end{array}
\end{array}
\]