Generalized Mertens sums

Gérard Tenenbaum

To Krishna Alladi, half-way,
as a token of a life-long friendship.

Let
\[S_k(x) := \sum_{p_1 \cdots p_k \leq x} \frac{1}{p_1 \cdots p_k} \]
\[(x \geq 2), \]
where \(p_j \) denotes a prime number. It is a well known result of Mertens that
\[S_1(x) = \log_2 x + c_1 + O\left(\frac{1}{\log x}\right) \]
\[(x \geq 3), \]
with (see, e.g., [3], p. 18)
\[c_1 := \gamma - \sum_p \left\{ \log \left(\frac{1}{1-1/p}\right) - \frac{1}{p} \right\} \approx 0.261497. \]

Here and in the sequel, \(\gamma \) is Euler’s constant, \(p \) stands for a prime number and \(\log_2 \) denotes the two-fold iterated logarithm. The number \(c_1 \) is called Mertens’ constant, also known as the Meissel-Mertens, or the Kronecker, or the Hadamard-La Vallée-Poussin constant.

In [1], [2], Popa used elementary techniques to derive similar asymptotic formulae in the cases \(k = 2 \) and \(3 \), with a main term equal to a polynomial of degree \(k \) in \(\log_2 x \) and a remainder term \(\asymp (\log_2 x)^k / \log x \). In this note we investigate the general case. We define classically \(\Gamma \) as the Euler gamma function.

Theorem 1. Let \(k \geq 1 \). We have
\[S_k(x) = P_k(\log_2 x) + O\left(\frac{(\log_2 x)^k}{\log x}\right) \]
\[(x \geq 3), \]
where \(P_k(X) := \sum_{0 \leq j \leq k} \lambda_{j,k} X^j \), and
\[\lambda_{j,k} := \sum_{m \leq k-j \leq m} \binom{k}{m,j,k-m-j}(c_1 - \gamma)^{k-m-j}\left(\frac{1}{\Gamma}\right)^{(m)}(1) \quad (0 \leq j \leq k). \]

Proof. Write \(P(s) := \sum_p 1/p^s \), so that we have
\[P(s) = \log \zeta(s) - g(s), \quad g(s) := \sum_{m \geq 2} \frac{1}{m} \sum_p \frac{1}{p^ms} \]
in any simply connected zero and pole-free region of the zeta function where the series \(g(s) \) converges. (Here \(\log \zeta(s) \) is the branch that is real for real \(s > 1 \).) Moreover, for \(s + 1 \) in the same region, we have
\[P(s + 1) = \log(1/s) + h(s), \]
with \(h(s) = \log \{s\zeta(s+1)\} - g(s + 1) \) and where \(\log(1/s) \) is understood as the principal branch. The function \(h(s) \) is clearly holomorphic in a disk around \(s = 0 \).

Now, for any \(c > 0 \), we have
\[S_k(x) = \frac{1}{2\pi i} \int_{c+i\mathbb{R}} P(s+1)^k x^s \frac{ds}{s} \quad (x \in \mathbb{R}^+ \setminus \mathbb{N}). \]

By following, *mutatis mutandis*, the argument of the Selberg-Delange method (see [3], ch. II.5 & II.6) we readily obtain
\[S_k(x) = \frac{1}{2\pi i} \int_{\mathcal{H}} \left\{ \log \left(\frac{1}{s}\right) + h(0)\right\}^k x^s \frac{ds}{s} + O\left(\frac{(\log_2 x)^k}{\log x}\right) \]
\[(x \geq 2), \]
where \(\mathcal{H} \) is a Hankel contour around \(\mathbb{R}^- \), positively oriented.
We also observe that, by (1), we have
\[h(0) = - \sum_p \left\{ \log \left(\frac{1}{1 - 1/p} \right) - \frac{1}{p} \right\} = c_1 - \gamma. \]

It remains to compute
\[I_m(x) := \frac{1}{2\pi i} \int_{C} \left\{ \log \frac{1}{s} \right\}^m x^s \frac{ds}{s} \quad (m \geq 0). \]

To this end, we consider Hankel’s formula (see, e.g., [3], th. II.0.17)
\[\frac{1}{2\pi i} \int_{C} x^s \frac{ds}{s^{1+\varepsilon}} = \frac{(\log x)^z}{\Gamma(z+1)} \quad (z \in \mathbb{C}) \]
and derive
\[I_m(x) = \sum_{0 \leq j \leq m} \binom{m}{j} (\log_2 x)^j \left(\frac{1}{\Gamma} \right)^{(m-j)}(1). \]

Rearranging the terms, we arrive at the announced formula for \(P_k(X) \).

Specialization. Noting that \((1/\Gamma)'(1) = \gamma\), \((1/\Gamma)''(1) = \gamma^2 - \frac{1}{6}\pi^2\), \((1/\Gamma)^{(3)}(1) = 2\zeta(3) - \frac{1}{2}\pi^2\gamma + \gamma^3\), \((1/\Gamma)^{(4)}(1) = \frac{1}{60}\pi^4 + 8\gamma\zeta(3) + 3\pi^2\gamma^2 + \gamma^4\), as may be deduced from classical formulae for the logarithmic derivative of the Euler function (see, e.g., [3], chap. II.0), we find
\[
\begin{align*}
P_1(X) &= X + c_1, \\
P_2(X) &= (X + c_1)^2 - \frac{1}{6}\pi^2, \\
P_3(X) &= (X + c_1)^3 - \frac{1}{2}\pi^2(X + c_1) + 2\zeta(3), \\
P_4(X) &= (X + c_1)^4 - \pi^2(X + c_1)^2 + 8\zeta(3)(X + c_1) + \frac{1}{60}\pi^4.
\end{align*}
\]

Remark. By retaining, in the integrand of (2), the first \(N + 1 \) terms of the Taylor expansion of \(h(s) \) at the origin, the above method readily yields, for arbitrary integer \(N \geq 0 \), an asymptotic formula of the type
\[S_k(x) = \sum_{0 \leq j \leq N} \frac{P_{j,k}(\log_2 x)}{(\log x)^j} + O \left(\frac{(\log_2 x)^k}{(\log x)^{k+N+1}} \right) \]
where \(P_{j,k} \) is an explicit polynomial of degree \(k \).

Acknowledgement. The author wishes to express warm thanks to Dumitru Popa for sending his works on the subject and for subsequent interesting conversations on the problem.

References